Pedestrians detection using a cascade of LBP and HOG classifiers

Claudiu Cosma, R. Brehar, S. Nedevschi
{"title":"Pedestrians detection using a cascade of LBP and HOG classifiers","authors":"Claudiu Cosma, R. Brehar, S. Nedevschi","doi":"10.1109/ICCP.2013.6646084","DOIUrl":null,"url":null,"abstract":"Accurate pedestrian detection in urban environment is a highly explored research field. We propose a new approach in pedestrian detection that combines the popular Local Binary Patterns and Histogram of Oriented Gradient features. The novelty of our work resides in the combination of a reduced HOG feature vector with uniform LBP patterns for the pedestrian data representation. Another contribution resides in the design and implementation of a two-stage cascade classifier of Support Vector Machine. Our method has been trained and tested on reference benchmark datasets and it proved to have good results.","PeriodicalId":380109,"journal":{"name":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2013.6646084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Accurate pedestrian detection in urban environment is a highly explored research field. We propose a new approach in pedestrian detection that combines the popular Local Binary Patterns and Histogram of Oriented Gradient features. The novelty of our work resides in the combination of a reduced HOG feature vector with uniform LBP patterns for the pedestrian data representation. Another contribution resides in the design and implementation of a two-stage cascade classifier of Support Vector Machine. Our method has been trained and tested on reference benchmark datasets and it proved to have good results.
使用LBP和HOG分类器级联的行人检测
城市环境中行人的准确检测是一个被高度探索的研究领域。我们提出了一种新的行人检测方法,该方法结合了流行的局部二值模式和定向梯度直方图特征。我们工作的新颖之处在于将简化的HOG特征向量与统一的LBP模式相结合,用于行人数据表示。另一个贡献在于支持向量机的两阶段级联分类器的设计和实现。我们的方法已经在参考基准数据集上进行了训练和测试,证明了它有很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信