{"title":"Enhanced correlation coefficient as a refinement of image registration","authors":"Stephen, Wen Hwooi Khor, Aznul Qalid Md. Sabri","doi":"10.1109/ICSIPA.2017.8120609","DOIUrl":null,"url":null,"abstract":"A study of the effectiveness of Enhanced Correlation Coefficient (ECC) on the performance of feature-based image registration approaches is carried out. This investigation determines if ECC improves image registration performance on datasets which test on invariance to scale, rotation and viewpoint change. Five state-of-the-arts methods are considered, namely KAZE, Binary Robust Invariant Scalable Keypoints (BRISK), Oriented FAST and Rotated Brief (ORB), Speeded-Up Robust Features (SURF), and Scale-Invariant Feature Transform (SIFT). Root-mean-squared error of control points is used to evaluate the image registration performance on datasets taken from the Oxford Robotics Database. A global ranking factor is used to rank each method within a dataset. The efficiency of each method is recorded as a guide for selecting a method for a specific application. Results indicate that ECC improves image registration performance in most cases with a small time addition.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"568 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A study of the effectiveness of Enhanced Correlation Coefficient (ECC) on the performance of feature-based image registration approaches is carried out. This investigation determines if ECC improves image registration performance on datasets which test on invariance to scale, rotation and viewpoint change. Five state-of-the-arts methods are considered, namely KAZE, Binary Robust Invariant Scalable Keypoints (BRISK), Oriented FAST and Rotated Brief (ORB), Speeded-Up Robust Features (SURF), and Scale-Invariant Feature Transform (SIFT). Root-mean-squared error of control points is used to evaluate the image registration performance on datasets taken from the Oxford Robotics Database. A global ranking factor is used to rank each method within a dataset. The efficiency of each method is recorded as a guide for selecting a method for a specific application. Results indicate that ECC improves image registration performance in most cases with a small time addition.