Enhanced correlation coefficient as a refinement of image registration

Stephen, Wen Hwooi Khor, Aznul Qalid Md. Sabri
{"title":"Enhanced correlation coefficient as a refinement of image registration","authors":"Stephen, Wen Hwooi Khor, Aznul Qalid Md. Sabri","doi":"10.1109/ICSIPA.2017.8120609","DOIUrl":null,"url":null,"abstract":"A study of the effectiveness of Enhanced Correlation Coefficient (ECC) on the performance of feature-based image registration approaches is carried out. This investigation determines if ECC improves image registration performance on datasets which test on invariance to scale, rotation and viewpoint change. Five state-of-the-arts methods are considered, namely KAZE, Binary Robust Invariant Scalable Keypoints (BRISK), Oriented FAST and Rotated Brief (ORB), Speeded-Up Robust Features (SURF), and Scale-Invariant Feature Transform (SIFT). Root-mean-squared error of control points is used to evaluate the image registration performance on datasets taken from the Oxford Robotics Database. A global ranking factor is used to rank each method within a dataset. The efficiency of each method is recorded as a guide for selecting a method for a specific application. Results indicate that ECC improves image registration performance in most cases with a small time addition.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"568 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A study of the effectiveness of Enhanced Correlation Coefficient (ECC) on the performance of feature-based image registration approaches is carried out. This investigation determines if ECC improves image registration performance on datasets which test on invariance to scale, rotation and viewpoint change. Five state-of-the-arts methods are considered, namely KAZE, Binary Robust Invariant Scalable Keypoints (BRISK), Oriented FAST and Rotated Brief (ORB), Speeded-Up Robust Features (SURF), and Scale-Invariant Feature Transform (SIFT). Root-mean-squared error of control points is used to evaluate the image registration performance on datasets taken from the Oxford Robotics Database. A global ranking factor is used to rank each method within a dataset. The efficiency of each method is recorded as a guide for selecting a method for a specific application. Results indicate that ECC improves image registration performance in most cases with a small time addition.
增强的相关系数作为图像配准的细化
研究了增强相关系数(ECC)对基于特征的图像配准方法性能的影响。本研究确定了ECC是否提高了数据集的图像配准性能,这些数据集测试了尺度、旋转和视点变化的不变性。考虑了五种最先进的方法,即KAZE,二进制鲁棒不变可伸缩关键点(BRISK),定向FAST和旋转简短(ORB),加速鲁棒特征(SURF)和尺度不变特征变换(SIFT)。使用控制点的均方根误差来评估来自牛津机器人数据库的数据集的图像配准性能。使用全局排名因子对数据集中的每个方法进行排名。记录每种方法的效率,作为为特定应用选择方法的指南。结果表明,在大多数情况下,ECC可以提高图像配准的性能,并且增加的时间较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信