Comparing Two Representations for Evolving Micro in 3D RTS Games

Siming Liu, S. Louis
{"title":"Comparing Two Representations for Evolving Micro in 3D RTS Games","authors":"Siming Liu, S. Louis","doi":"10.1109/ICTAI.2016.0114","DOIUrl":null,"url":null,"abstract":"We are interested in using genetic algorithms to generate winning maneuvering behaviors (or micro) in skirmish scenarios for three dimensional Real-Time Strategy games. In prior work, we encoded parameterized 3D micro behaviors like target selection and kiting into an algorithm for controlling friendly units in battle. Genetic algorithms then tuned these parameters to guide unit maneuvering in order to win skirmishes. In this study, we investigate a new representation for micro behaviors that uses only an influence map and a combination of thirteen potential fields. Genetic algorithms then tune influence map and potential field parameters to evolve winning micro behaviors. We compare the performance of both representations on identical scenarios against identical opponents in a full 3D RTS game environment called FastEcslent. The results show that the genetic algorithm using our new representation using less domain knowledge, reliably evolved high quality 3D micro behaviors that slightly, but significantly, outperformed behaviors from our prior work. Our work thus provides evidence for the viability of using potential fields for generating high quality, complex, micro for three dimensional RTS games.","PeriodicalId":245697,"journal":{"name":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2016.0114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We are interested in using genetic algorithms to generate winning maneuvering behaviors (or micro) in skirmish scenarios for three dimensional Real-Time Strategy games. In prior work, we encoded parameterized 3D micro behaviors like target selection and kiting into an algorithm for controlling friendly units in battle. Genetic algorithms then tuned these parameters to guide unit maneuvering in order to win skirmishes. In this study, we investigate a new representation for micro behaviors that uses only an influence map and a combination of thirteen potential fields. Genetic algorithms then tune influence map and potential field parameters to evolve winning micro behaviors. We compare the performance of both representations on identical scenarios against identical opponents in a full 3D RTS game environment called FastEcslent. The results show that the genetic algorithm using our new representation using less domain knowledge, reliably evolved high quality 3D micro behaviors that slightly, but significantly, outperformed behaviors from our prior work. Our work thus provides evidence for the viability of using potential fields for generating high quality, complex, micro for three dimensional RTS games.
三维即时战略游戏中微进化的两种表现形式的比较
我们感兴趣的是使用遗传算法在三维实时战略游戏的小规模冲突场景中生成获胜的机动行为(或微观)。在之前的工作中,我们将参数化的3D微行为(如目标选择和风筝)编码为控制战斗中友军单位的算法。然后,遗传算法调整这些参数来指导单位机动,以赢得小规模战斗。在本研究中,我们研究了仅使用影响图和13个势场组合的微行为的新表示。然后,遗传算法调整影响图和势场参数来进化获胜的微观行为。我们在一个名为FastEcslent的完整3D RTS游戏环境中比较了两种表现形式在相同场景下与相同对手的表现。结果表明,使用我们的新表示的遗传算法使用较少的领域知识,可靠地进化出高质量的3D微行为,略微但显著优于我们之前工作的行为。因此,我们的工作为使用势场生成高质量、复杂、微观的三维RTS游戏的可行性提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信