PREMA: A Predictive Multi-Task Scheduling Algorithm For Preemptible Neural Processing Units

Yujeong Choi, Minsoo Rhu
{"title":"PREMA: A Predictive Multi-Task Scheduling Algorithm For Preemptible Neural Processing Units","authors":"Yujeong Choi, Minsoo Rhu","doi":"10.1109/HPCA47549.2020.00027","DOIUrl":null,"url":null,"abstract":"To amortize cost, cloud vendors providing DNN acceleration as a service to end-users employ consolidation and virtualization to share the underlying resources among multiple DNN service requests. This paper makes a case for a \"preemptible\" neural processing unit (NPU) and a \"predictive\" multi-task scheduler to meet the latency demands of high-priority inference while maintaining high throughput. We evaluate both the mechanisms that enable NPUs to be preemptible and the policies that utilize them to meet scheduling objectives. We show that preemptive NPU multi-tasking can achieve an average 7.8×, 1.4×, and 4.8× improvement in latency, throughput, and SLA satisfaction, respectively.","PeriodicalId":339648,"journal":{"name":"2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA47549.2020.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

To amortize cost, cloud vendors providing DNN acceleration as a service to end-users employ consolidation and virtualization to share the underlying resources among multiple DNN service requests. This paper makes a case for a "preemptible" neural processing unit (NPU) and a "predictive" multi-task scheduler to meet the latency demands of high-priority inference while maintaining high throughput. We evaluate both the mechanisms that enable NPUs to be preemptible and the policies that utilize them to meet scheduling objectives. We show that preemptive NPU multi-tasking can achieve an average 7.8×, 1.4×, and 4.8× improvement in latency, throughput, and SLA satisfaction, respectively.
PREMA:一种可抢占神经处理单元的预测性多任务调度算法
为了分摊成本,向最终用户提供DNN加速服务的云供应商采用整合和虚拟化技术,在多个DNN服务请求之间共享底层资源。本文提出了一个“可抢占”神经处理单元(NPU)和一个“预测”多任务调度程序的案例,以满足高优先级推理的延迟需求,同时保持高吞吐量。我们评估了使npu具有可抢占性的机制和利用它们来满足调度目标的策略。我们表明,先发制人的NPU多任务可以在延迟、吞吐量和SLA满意度方面分别实现平均7.8倍、1.4倍和4.8倍的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信