Stock Return Predictability: A Bayesian Model Selection Perspective

M. Cremers
{"title":"Stock Return Predictability: A Bayesian Model Selection Perspective","authors":"M. Cremers","doi":"10.2139/ssrn.251279","DOIUrl":null,"url":null,"abstract":"Attempts to characterize stock return predictability have resulted in little consensus on the important conditioning variables, giving rise to model uncertainty and data snooping fears. We introduce a new methodology that explicitly incorporates model uncertainty by comparing all possible models simultaneously and in which the priors are calibrated to reflect economically meaningful information. Our approach minimizes data snooping given the information set and the priors. We compare the prior views of a skeptic and a confident investor. The data imply posterior probabilities that are in general more supportive of stock return predictability than the priors for both types of investors. Copyright 2002, Oxford University Press.","PeriodicalId":192327,"journal":{"name":"EFA 2000 London Meetings (Archive)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"361","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EFA 2000 London Meetings (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.251279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 361

Abstract

Attempts to characterize stock return predictability have resulted in little consensus on the important conditioning variables, giving rise to model uncertainty and data snooping fears. We introduce a new methodology that explicitly incorporates model uncertainty by comparing all possible models simultaneously and in which the priors are calibrated to reflect economically meaningful information. Our approach minimizes data snooping given the information set and the priors. We compare the prior views of a skeptic and a confident investor. The data imply posterior probabilities that are in general more supportive of stock return predictability than the priors for both types of investors. Copyright 2002, Oxford University Press.
股票收益可预测性:贝叶斯模型选择的视角
试图描述股票收益的可预测性导致在重要的条件变量上几乎没有共识,从而导致模型不确定性和数据窥探恐惧。我们引入了一种新的方法,该方法通过同时比较所有可能的模型来明确地纳入模型不确定性,并对先验进行校准以反映有经济意义的信息。我们的方法最大限度地减少了给定信息集和先验的数据窥探。我们比较了一个怀疑论者和一个自信的投资者之前的观点。对于这两种类型的投资者来说,数据意味着后验概率通常比先验概率更支持股票回报的可预测性。牛津大学出版社版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信