On compensating the Mel-frequency cepstral coefficients for noisy speech recognition

E. Choi
{"title":"On compensating the Mel-frequency cepstral coefficients for noisy speech recognition","authors":"E. Choi","doi":"10.1145/1151699.1151705","DOIUrl":null,"url":null,"abstract":"This paper describes a novel noise-robust automatic speech recognition (ASR) front-end that employs a combination of Mel-filterbank output compensation and cumulative distribution mapping of cepstral coefficients with truncated Gaussian distribution. Recognition experiments on the Aurora II connected digits database reveal that the proposed front-end achieves an average digit recognition accuracy of 84.92% for a model set trained from clean speech data. Compared with the ETSI standard Mel-cepstral front-end, the proposed front-end is found to obtain a relative error rate reduction of around 61%. Moreover, the proposed front-end can provide comparable recognition accuracy with the ETSI advanced front-end, at less than half the computation load.","PeriodicalId":136130,"journal":{"name":"Australasian Computer Science Conference","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Computer Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1151699.1151705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper describes a novel noise-robust automatic speech recognition (ASR) front-end that employs a combination of Mel-filterbank output compensation and cumulative distribution mapping of cepstral coefficients with truncated Gaussian distribution. Recognition experiments on the Aurora II connected digits database reveal that the proposed front-end achieves an average digit recognition accuracy of 84.92% for a model set trained from clean speech data. Compared with the ETSI standard Mel-cepstral front-end, the proposed front-end is found to obtain a relative error rate reduction of around 61%. Moreover, the proposed front-end can provide comparable recognition accuracy with the ETSI advanced front-end, at less than half the computation load.
噪声语音识别中mel频率倒谱系数的补偿
本文提出了一种新的抗噪自动语音识别(ASR)前端,该前端采用mel滤波器组输出补偿和截断高斯分布的倒谱系数累积分布映射相结合的方法。在Aurora II连接数字数据库上的识别实验表明,对于干净语音数据训练的模型集,所提前端的平均数字识别准确率达到84.92%。与ETSI标准mel -倒谱前端相比,该前端的相对错误率降低了61%左右。此外,所提出的前端可以提供与ETSI高级前端相当的识别精度,而计算负荷不到ETSI高级前端的一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信