{"title":"On compensating the Mel-frequency cepstral coefficients for noisy speech recognition","authors":"E. Choi","doi":"10.1145/1151699.1151705","DOIUrl":null,"url":null,"abstract":"This paper describes a novel noise-robust automatic speech recognition (ASR) front-end that employs a combination of Mel-filterbank output compensation and cumulative distribution mapping of cepstral coefficients with truncated Gaussian distribution. Recognition experiments on the Aurora II connected digits database reveal that the proposed front-end achieves an average digit recognition accuracy of 84.92% for a model set trained from clean speech data. Compared with the ETSI standard Mel-cepstral front-end, the proposed front-end is found to obtain a relative error rate reduction of around 61%. Moreover, the proposed front-end can provide comparable recognition accuracy with the ETSI advanced front-end, at less than half the computation load.","PeriodicalId":136130,"journal":{"name":"Australasian Computer Science Conference","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Computer Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1151699.1151705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper describes a novel noise-robust automatic speech recognition (ASR) front-end that employs a combination of Mel-filterbank output compensation and cumulative distribution mapping of cepstral coefficients with truncated Gaussian distribution. Recognition experiments on the Aurora II connected digits database reveal that the proposed front-end achieves an average digit recognition accuracy of 84.92% for a model set trained from clean speech data. Compared with the ETSI standard Mel-cepstral front-end, the proposed front-end is found to obtain a relative error rate reduction of around 61%. Moreover, the proposed front-end can provide comparable recognition accuracy with the ETSI advanced front-end, at less than half the computation load.