Parameter setting and exploration of TAGS using a genetic algorithm

Hagit Sarfati, E. Bachmat, Sagit Kedem-Yemini
{"title":"Parameter setting and exploration of TAGS using a genetic algorithm","authors":"Hagit Sarfati, E. Bachmat, Sagit Kedem-Yemini","doi":"10.1109/SCIS.2007.367702","DOIUrl":null,"url":null,"abstract":"We consider the performance of TAGS, a multi-host job assignment policy. We use a genetic algorithm to compute the optimal parameter settings for the policy. We then explore the performance of the policy using the optimal parameters, when the job size distribution is a heavy-tailed bounded Pareto distribution with parameter alpha. We show that TAGS only operates at low inter-arrival rates. At low rates it is very efficient in comparison with other standard policies. At high rates TAGS has to be combined with other policies to achieve good performance. We also show that the performance is nearly symmetrical around the value alpha = 1, with the best performance when alpha = 1","PeriodicalId":184726,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Scheduling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCIS.2007.367702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the performance of TAGS, a multi-host job assignment policy. We use a genetic algorithm to compute the optimal parameter settings for the policy. We then explore the performance of the policy using the optimal parameters, when the job size distribution is a heavy-tailed bounded Pareto distribution with parameter alpha. We show that TAGS only operates at low inter-arrival rates. At low rates it is very efficient in comparison with other standard policies. At high rates TAGS has to be combined with other policies to achieve good performance. We also show that the performance is nearly symmetrical around the value alpha = 1, with the best performance when alpha = 1
基于遗传算法的tag参数设置与探索
我们考虑了多主机作业分配策略TAGS的性能。我们使用遗传算法来计算策略的最优参数设置。然后,当作业大小分布为带参数alpha的重尾有界Pareto分布时,我们探讨了使用最优参数的策略性能。我们表明TAGS仅在低到达率下运行。在低利率下,与其他标准政策相比,它是非常有效的。在高利率下,tag必须与其他政策相结合以获得良好的性能。我们还表明,在alpha = 1附近,性能几乎是对称的,当alpha = 1时性能最佳
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信