{"title":"Particle Swarm Optimization-based Support Vector Machine Method for Sentiment Analysis in OVO Digital Payment Applications","authors":"Retno Sari, R. Y. Hayuningtyas","doi":"10.36378/jtos.v4i2.1776","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is used to analyze reviews of a place or item from an application or website that then classified the review into positive reviews or negative reviews. reviews from users are considered very important because it contains information that can make it easier for new users who want to choose the right digital payment. Reviews about digital payment ovo are so much that it is difficult for prospective users of ovo digital payment applications to draw conclusions about ovo digital payment information. For this reason, a classification method is needed in this study using support vector machine and PSO methods. In this study, we used 400 data that were reduced to 200 positive reviews and 200 negative reviews. The accuracy obtained by using the support vector machine method of 76.50% is in the fair classification, while the accuracy obtained by using the support vector machine and Particle Swarm Optimization (PSO) method is 82.75% which is in good classification.","PeriodicalId":114474,"journal":{"name":"JURNAL TEKNOLOGI DAN OPEN SOURCE","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL TEKNOLOGI DAN OPEN SOURCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36378/jtos.v4i2.1776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Sentiment analysis is used to analyze reviews of a place or item from an application or website that then classified the review into positive reviews or negative reviews. reviews from users are considered very important because it contains information that can make it easier for new users who want to choose the right digital payment. Reviews about digital payment ovo are so much that it is difficult for prospective users of ovo digital payment applications to draw conclusions about ovo digital payment information. For this reason, a classification method is needed in this study using support vector machine and PSO methods. In this study, we used 400 data that were reduced to 200 positive reviews and 200 negative reviews. The accuracy obtained by using the support vector machine method of 76.50% is in the fair classification, while the accuracy obtained by using the support vector machine and Particle Swarm Optimization (PSO) method is 82.75% which is in good classification.