The Geometry of Real Solutions to the Power Flow Equations

J. Lindberg, Alisha Zachariah, N. Boston, B. Lesieutre
{"title":"The Geometry of Real Solutions to the Power Flow Equations","authors":"J. Lindberg, Alisha Zachariah, N. Boston, B. Lesieutre","doi":"10.1109/ALLERTON.2018.8635895","DOIUrl":null,"url":null,"abstract":"Analyses of power engineering networks rely on an understanding of the power flow equations, a system of quadratic equations relating power injections and voltages at each node. Finding the number of nontrivial, real solutions to these equations is an active area of study. In this paper we propose that in general for a fixed topology, a single, univariate polynomial whose coefficients are polynomials in the network susceptances suffices for determining the number of nontrivial, real solutions to the power flow equations. We then exploit this polynomial to gain geometric insight to the solution regions for a fixed network where a solution region is the region in the space of susceptances wherein the number of real solutions to the system is some fixed constant. This type of analysis allows easier insight to robustness analysis for varying susceptances. We observe that some solution regions resemble thickened hyperplanes and therefore appear as stripes in our figures.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Analyses of power engineering networks rely on an understanding of the power flow equations, a system of quadratic equations relating power injections and voltages at each node. Finding the number of nontrivial, real solutions to these equations is an active area of study. In this paper we propose that in general for a fixed topology, a single, univariate polynomial whose coefficients are polynomials in the network susceptances suffices for determining the number of nontrivial, real solutions to the power flow equations. We then exploit this polynomial to gain geometric insight to the solution regions for a fixed network where a solution region is the region in the space of susceptances wherein the number of real solutions to the system is some fixed constant. This type of analysis allows easier insight to robustness analysis for varying susceptances. We observe that some solution regions resemble thickened hyperplanes and therefore appear as stripes in our figures.
功率流方程实解的几何
电力工程网络的分析依赖于对功率流方程的理解,这是一个关于功率注入和每个节点电压的二次方程系统。寻找这些方程的非平凡实数解的数量是一个活跃的研究领域。在本文中,我们提出一般对于固定拓扑,一个单变量多项式,其系数是网络电纳中的多项式,足以确定潮流方程的非平凡实解的个数。然后,我们利用这个多项式来获得固定网络的解域的几何洞察力,其中解域是电纳空间中的区域,其中系统的实解的个数是某个固定常数。这种类型的分析可以更容易地洞察到鲁棒性分析的变化电纳。我们观察到一些解区域类似于加厚的超平面,因此在我们的图中显示为条纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信