Graphical Assistant Grouped Network Autoregression Model: a Bayesian Nonparametric Recourse

Yi Ren, Xuening Zhu, Xiaoling Lu, Guanyu Hu
{"title":"Graphical Assistant Grouped Network Autoregression Model: a Bayesian Nonparametric Recourse","authors":"Yi Ren, Xuening Zhu, Xiaoling Lu, Guanyu Hu","doi":"10.1080/07350015.2022.2143784","DOIUrl":null,"url":null,"abstract":"Vector autoregression model is ubiquitous in classical time series data analysis. With the rapid advance of social network sites, time series data over latent graph is becoming increasingly popular. In this paper, we develop a novel Bayesian grouped network autoregression model to simultaneously estimate group information (number of groups and group configurations) and group-wise parameters. Specifically, a graphically assisted Chinese restaurant process is incorporated under framework of the network autoregression model to improve the statistical inference performance. An efficient Markov chain Monte Carlo sampling algorithm is used to sample from the posterior distribution. Extensive studies are conducted to evaluate the finite sample performance of our proposed methodology. Additionally, we analyze two real datasets as illustrations of the effectiveness of our approach.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2143784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vector autoregression model is ubiquitous in classical time series data analysis. With the rapid advance of social network sites, time series data over latent graph is becoming increasingly popular. In this paper, we develop a novel Bayesian grouped network autoregression model to simultaneously estimate group information (number of groups and group configurations) and group-wise parameters. Specifically, a graphically assisted Chinese restaurant process is incorporated under framework of the network autoregression model to improve the statistical inference performance. An efficient Markov chain Monte Carlo sampling algorithm is used to sample from the posterior distribution. Extensive studies are conducted to evaluate the finite sample performance of our proposed methodology. Additionally, we analyze two real datasets as illustrations of the effectiveness of our approach.
图形辅助分组网络自回归模型:贝叶斯非参数资源
向量自回归模型在经典时间序列数据分析中普遍存在。随着社交网站的快速发展,基于潜图的时间序列数据越来越受欢迎。在本文中,我们开发了一种新的贝叶斯分组网络自回归模型来同时估计群体信息(群体数量和群体配置)和群体明智参数。具体而言,在网络自回归模型框架下引入图形辅助的中餐馆过程,以提高统计推理性能。采用一种有效的马尔可夫链蒙特卡罗抽样算法从后验分布中进行抽样。进行了广泛的研究,以评估我们提出的方法的有限样本性能。此外,我们分析了两个真实的数据集,以说明我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信