Algorithms for index-assisted selectivity estimation

Paul M. Aoki
{"title":"Algorithms for index-assisted selectivity estimation","authors":"Paul M. Aoki","doi":"10.1109/ICDE.1999.754938","DOIUrl":null,"url":null,"abstract":"The standard mechanisms for query selectivity estimation used in relational database systems rely on properties that are specific to the attribute types. The query optimizer in an extensible database system is, in general, unable to exploit these mechanisms for user-defined types, forcing the database extender to invent new estimation mechanisms. In this paper, we discuss extensions to the generalized search tree (GiST) that simplify the creation of user-defined selectivity estimation methods. An experimental comparison of such methods with multidimensional estimators from the literature has demonstrated very competitive results.","PeriodicalId":236128,"journal":{"name":"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1999.754938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The standard mechanisms for query selectivity estimation used in relational database systems rely on properties that are specific to the attribute types. The query optimizer in an extensible database system is, in general, unable to exploit these mechanisms for user-defined types, forcing the database extender to invent new estimation mechanisms. In this paper, we discuss extensions to the generalized search tree (GiST) that simplify the creation of user-defined selectivity estimation methods. An experimental comparison of such methods with multidimensional estimators from the literature has demonstrated very competitive results.
索引辅助选择性估计算法
关系数据库系统中用于查询选择性估计的标准机制依赖于特定于属性类型的属性。可扩展数据库系统中的查询优化器通常无法利用用户定义类型的这些机制,这迫使数据库扩展程序发明新的估计机制。在本文中,我们讨论了广义搜索树(GiST)的扩展,简化了用户定义选择性估计方法的创建。这些方法与文献中的多维估计器的实验比较显示了非常有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信