Methods for enhancing framing capability of high-speed digital holography

L. Xiaowei, L. Jingzhen
{"title":"Methods for enhancing framing capability of high-speed digital holography","authors":"L. Xiaowei, L. Jingzhen","doi":"10.1109/AOM.2010.5713569","DOIUrl":null,"url":null,"abstract":"According to the spatial frequencies distribution of different holographic recording systems, we proposed the spatial frequency density to analyze the framing capability of high-speed digital holography. In our results, by increasing the spatial frequency density, the framing capability of high-speed digital holography can be improved. The spatial frequency density can be increased through recording with long-wavelength light source, far recording distance under resolution requirement, and using CCD with small pixel size when recording the same object with plane reference wave. In the spherical reference wave case, the density can also be increased by adjusting the location of object and point source reference. Furthermore, simulations were calculated to analyze the framing capability of high-speed digital holography in different systems. The simulated results agreed well with the theory.","PeriodicalId":222199,"journal":{"name":"Advances in Optoelectronics and Micro/nano-optics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optoelectronics and Micro/nano-optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AOM.2010.5713569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the spatial frequencies distribution of different holographic recording systems, we proposed the spatial frequency density to analyze the framing capability of high-speed digital holography. In our results, by increasing the spatial frequency density, the framing capability of high-speed digital holography can be improved. The spatial frequency density can be increased through recording with long-wavelength light source, far recording distance under resolution requirement, and using CCD with small pixel size when recording the same object with plane reference wave. In the spherical reference wave case, the density can also be increased by adjusting the location of object and point source reference. Furthermore, simulations were calculated to analyze the framing capability of high-speed digital holography in different systems. The simulated results agreed well with the theory.
提高高速数字全息分幅能力的方法
根据不同全息记录系统的空间频率分布,提出了空间频率密度来分析高速数字全息的分幅能力。在我们的研究结果中,通过增加空间频率密度,可以提高高速数字全息的分幅能力。采用波长较长的光源进行记录,在分辨率要求下进行较远的记录距离,在使用平面参考波记录同一物体时使用小像素的CCD进行记录,可以提高空间频率密度。在球形参考波情况下,通过调整物体和点源参考的位置也可以提高密度。通过仿真分析了高速数字全息在不同系统下的分幅能力。仿真结果与理论吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信