TypeNet: Scaling up Keystroke Biometrics

A. Acien, John V. Monaco, A. Morales, R. Vera-Rodríguez, Julian Fierrez
{"title":"TypeNet: Scaling up Keystroke Biometrics","authors":"A. Acien, John V. Monaco, A. Morales, R. Vera-Rodríguez, Julian Fierrez","doi":"10.1109/IJCB48548.2020.9304908","DOIUrl":null,"url":null,"abstract":"We study the suitability of keystroke dynamics to authenticate 100 K users typing free-text. For this, we first analyze to what extent our method based on a Siamese Recurrent Neural Network (RNN) is able to authenticate users when the amount of data per user is scarce, a common scenario in free-text keystroke authentication. With 1 K users for testing the network, a population size comparable to previous works, TypeNet obtains an equal error rate of 4.8% using only 5 enrollment sequences and 1 test sequence per user with 50 keystrokes per sequence. Using the same amount of data per user, as the number of test users is scaled up to 100K, the performance in comparison to 1 K decays relatively by less than 5%, demonstrating the potential of Type-Net to scale well at large scale number of users. Our experiments are conducted with the Aalto University keystroke database. To the best of our knowledge, this is the largest free-text keystroke database captured with more than 136M keystrokes from 168K users.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We study the suitability of keystroke dynamics to authenticate 100 K users typing free-text. For this, we first analyze to what extent our method based on a Siamese Recurrent Neural Network (RNN) is able to authenticate users when the amount of data per user is scarce, a common scenario in free-text keystroke authentication. With 1 K users for testing the network, a population size comparable to previous works, TypeNet obtains an equal error rate of 4.8% using only 5 enrollment sequences and 1 test sequence per user with 50 keystrokes per sequence. Using the same amount of data per user, as the number of test users is scaled up to 100K, the performance in comparison to 1 K decays relatively by less than 5%, demonstrating the potential of Type-Net to scale well at large scale number of users. Our experiments are conducted with the Aalto University keystroke database. To the best of our knowledge, this is the largest free-text keystroke database captured with more than 136M keystrokes from 168K users.
TypeNet:扩展击键生物识别
我们研究了击键动力学的适用性,以验证输入自由文本的100k用户。为此,我们首先分析了基于Siamese递归神经网络(RNN)的方法在每个用户的数据量不足时能够对用户进行身份验证的程度,这是自由文本击键身份验证中的常见情况。使用1 K个用户来测试网络,总体规模与以前的工作相当,TypeNet只使用5个注册序列和每个用户1个测试序列,每个序列有50次击键,从而获得4.8%的错误率。在每个用户使用相同数量的数据时,当测试用户数量扩展到100K时,与1k相比,性能的衰减相对小于5%,这表明Type-Net在大规模用户数量下可以很好地扩展。我们的实验是在阿尔托大学按键数据库中进行的。据我们所知,这是最大的自由文本击键数据库,包含来自168K个用户的超过136M个击键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信