Ruofan Wang, Jin Xu, Lingna Yue, H. Yin, G. Zhao, Wenxiang Wang, Y. Gong, J.J. Feng, Yanyu Wei
{"title":"Stability Improvement of Electron Gun for Millimeter Wave TWTs by Immersed Flow Focusing System","authors":"Ruofan Wang, Jin Xu, Lingna Yue, H. Yin, G. Zhao, Wenxiang Wang, Y. Gong, J.J. Feng, Yanyu Wei","doi":"10.1109/IVEC45766.2020.9520494","DOIUrl":null,"url":null,"abstract":"This paper introduces a high-stability electron optical system for millimeter wave traveling wave tubes. Firstly, a circular electronic injection Pierce electron gun is designed. The electron channel radius is 0.2mm, the current is 90mA. Then the immersed flow method was used to design a ppm focusing system with a magnetic field period of 7.3 mm and a peak value of 4900 Gauss. The stability of the immersed flow electron gun is compared with the gun under a conventional ppm magnetic field in consideration of thermal deformation and assembly errors.","PeriodicalId":170853,"journal":{"name":"2020 IEEE 21st International Conference on Vacuum Electronics (IVEC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Vacuum Electronics (IVEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVEC45766.2020.9520494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a high-stability electron optical system for millimeter wave traveling wave tubes. Firstly, a circular electronic injection Pierce electron gun is designed. The electron channel radius is 0.2mm, the current is 90mA. Then the immersed flow method was used to design a ppm focusing system with a magnetic field period of 7.3 mm and a peak value of 4900 Gauss. The stability of the immersed flow electron gun is compared with the gun under a conventional ppm magnetic field in consideration of thermal deformation and assembly errors.