A neural network controller based on the rule of bang-bang control

Chungyong Tsai, Chih-Chi Chang
{"title":"A neural network controller based on the rule of bang-bang control","authors":"Chungyong Tsai, Chih-Chi Chang","doi":"10.1109/IJCNN.1999.833412","DOIUrl":null,"url":null,"abstract":"Applying neural networks or fuzzy systems to the field of optimal control encounters the difficulty of locating adequate samples that can be used to train the neural networks or modify the fuzzy rules such that the optimal control value for a given state can be produced. Instead of an exhaustive search, this work presents a simple method based on the rule of bang-bang control to locate the training samples for time optimal control. Although the samples obtained by the proposed method can be learned by multilayer perceptrons and radial basis networks, a neural network deemed appropriate for learning these samples is proposed as well. Simulation results demonstrate the effectiveness of the proposed method.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Applying neural networks or fuzzy systems to the field of optimal control encounters the difficulty of locating adequate samples that can be used to train the neural networks or modify the fuzzy rules such that the optimal control value for a given state can be produced. Instead of an exhaustive search, this work presents a simple method based on the rule of bang-bang control to locate the training samples for time optimal control. Although the samples obtained by the proposed method can be learned by multilayer perceptrons and radial basis networks, a neural network deemed appropriate for learning these samples is proposed as well. Simulation results demonstrate the effectiveness of the proposed method.
一种基于砰砰控制规则的神经网络控制器
将神经网络或模糊系统应用于最优控制领域遇到了找到足够的样本的困难,这些样本可用于训练神经网络或修改模糊规则,以便可以产生给定状态的最优控制值。本文提出了一种基于bang-bang控制规则的简单方法来定位训练样本,以实现时间最优控制,而不是穷举搜索。虽然该方法获得的样本可以通过多层感知器和径向基网络学习,但也提出了一种适合学习这些样本的神经网络。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信