Fluid Limit of the M/M/1+GI-EDF Queue

L. Decreusefond, P. Moyal
{"title":"Fluid Limit of the M/M/1+GI-EDF Queue","authors":"L. Decreusefond, P. Moyal","doi":"10.1109/SAINTW.2005.65","DOIUrl":null,"url":null,"abstract":"Earliest-Deadline-First is known to be the optimal service discipline to guarantee time deadlines. We investigate here the performance of a single server queue under this discipline. The physical system is described at each time t, by an atomic measure, the atoms of which are the residual deadlines at time t. Working with measure-valued semi-martingales, we are able to derive the fluid limit of this system in critical and super-critical regimes. This yields to some approximations of the loss probability and several other performance parameters.","PeriodicalId":220913,"journal":{"name":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 Symposium on Applications and the Internet Workshops (SAINT 2005 Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAINTW.2005.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Earliest-Deadline-First is known to be the optimal service discipline to guarantee time deadlines. We investigate here the performance of a single server queue under this discipline. The physical system is described at each time t, by an atomic measure, the atoms of which are the residual deadlines at time t. Working with measure-valued semi-martingales, we are able to derive the fluid limit of this system in critical and super-critical regimes. This yields to some approximations of the loss probability and several other performance parameters.
M/M/1+GI-EDF队列流体极限
众所周知,“最早截止日期-优先”是保证时间截止日期的最佳服务原则。我们在此研究在此原则下单个服务器队列的性能。物理系统在每次t时刻用一个原子度量来描述,其中的原子是t时刻的剩余截止时间。利用测量值半鞅,我们能够推导出该系统在临界和超临界状态下的流体极限。这就产生了一些损失概率和其他几个性能参数的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信