Strategy Complexity of Point Payoff, Mean Payoff and Total Payoff Objectives in Countable MDPs

Richard Mayr, Eric Munday
{"title":"Strategy Complexity of Point Payoff, Mean Payoff and Total Payoff Objectives in Countable MDPs","authors":"Richard Mayr, Eric Munday","doi":"10.46298/lmcs-19(1:16)2023","DOIUrl":null,"url":null,"abstract":"We study countably infinite Markov decision processes (MDPs) with real-valued\ntransition rewards. Every infinite run induces the following sequences of\npayoffs: 1. Point payoff (the sequence of directly seen transition rewards), 2.\nMean payoff (the sequence of the sums of all rewards so far, divided by the\nnumber of steps), and 3. Total payoff (the sequence of the sums of all rewards\nso far). For each payoff type, the objective is to maximize the probability\nthat the $\\liminf$ is non-negative. We establish the complete picture of the\nstrategy complexity of these objectives, i.e., how much memory is necessary and\nsufficient for $\\varepsilon$-optimal (resp. optimal) strategies. Some cases can\nbe won with memoryless deterministic strategies, while others require a step\ncounter, a reward counter, or both.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(1:16)2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study countably infinite Markov decision processes (MDPs) with real-valued transition rewards. Every infinite run induces the following sequences of payoffs: 1. Point payoff (the sequence of directly seen transition rewards), 2. Mean payoff (the sequence of the sums of all rewards so far, divided by the number of steps), and 3. Total payoff (the sequence of the sums of all rewards so far). For each payoff type, the objective is to maximize the probability that the $\liminf$ is non-negative. We establish the complete picture of the strategy complexity of these objectives, i.e., how much memory is necessary and sufficient for $\varepsilon$-optimal (resp. optimal) strategies. Some cases can be won with memoryless deterministic strategies, while others require a step counter, a reward counter, or both.
可计数mdp中点收益、平均收益和总收益目标的策略复杂性
研究具有实值转移奖励的可数无限马尔可夫决策过程。每次无限运行都会产生以下收益序列:2.点收益(直接看到的过渡奖励序列);平均收益(到目前为止所有奖励的总和的序列,除以步骤数)和3。总收益(到目前为止所有奖励总和的序列)。对于每种收益类型,目标是最大化$\liminf$非负的概率。我们建立了这些目标的策略复杂性的完整图景,即,有多少内存是必要的和足够的$\varepsilon$ -最优(响应)。最优)策略。有些情况下可以通过无记忆确定性策略获胜,而另一些情况则需要计步器、奖励计数器或两者兼而有之。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信