First-moment multi-object forward-backward smoothing

Daniel E. Clark
{"title":"First-moment multi-object forward-backward smoothing","authors":"Daniel E. Clark","doi":"10.1109/ICIF.2010.5711921","DOIUrl":null,"url":null,"abstract":"The optimal solution to the problem of detecting, tracking and identifying multiple targets can be found through a direct generalisation of the Bayes filter to multi-object systems using Mahler's Finite Set Statistics. Due to the inherent complexity of the multi-object Bayes filter, Mahler proposed to propagate the first-order multi-object moment density, known as the Probability Hypothesis Density (PHD), instead of the multi-object posterior. This was derived using the concept of the probability generating functional (p.g.fl.) from point process theory. In this paper, I derive multi-object first-moment smoothers for forward-backward smoothing through a new formulation of the p.g.fl. smoother which takes advantage of the p.g.fl. Bayes update. This formulation permits the straightforward derivation of first-moment multi-object smoothers, including the PHD smoother.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The optimal solution to the problem of detecting, tracking and identifying multiple targets can be found through a direct generalisation of the Bayes filter to multi-object systems using Mahler's Finite Set Statistics. Due to the inherent complexity of the multi-object Bayes filter, Mahler proposed to propagate the first-order multi-object moment density, known as the Probability Hypothesis Density (PHD), instead of the multi-object posterior. This was derived using the concept of the probability generating functional (p.g.fl.) from point process theory. In this paper, I derive multi-object first-moment smoothers for forward-backward smoothing through a new formulation of the p.g.fl. smoother which takes advantage of the p.g.fl. Bayes update. This formulation permits the straightforward derivation of first-moment multi-object smoothers, including the PHD smoother.
第一时刻多目标前后平滑
通过使用马勒有限集统计将贝叶斯滤波器直接推广到多目标系统,可以找到检测,跟踪和识别多个目标问题的最佳解决方案。由于多目标贝叶斯滤波器固有的复杂性,Mahler提出用一阶多目标矩密度,即概率假设密度(Probability Hypothesis density, PHD)来代替多目标后验。这是利用点过程理论中的概率生成泛函的概念推导出来的。在本文中,我通过一种新的p.g.f.l公式推导出了用于前后平滑的多目标一阶矩平滑。平滑,利用了p.g.l fl。贝叶斯更新。该公式允许直接推导第一时刻多目标平滑,包括PHD平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信