Topological Analysis of Low Dimensional Phase Space Trajectories of High Dimensional EEG Signals For Classification of Interictal Epileptiform Discharges

A. Stiehl, M. Flammer, F. Anselstetter, N. Ille, H. Bornfleth, S. Geißelsöder, C. Uhl
{"title":"Topological Analysis of Low Dimensional Phase Space Trajectories of High Dimensional EEG Signals For Classification of Interictal Epileptiform Discharges","authors":"A. Stiehl, M. Flammer, F. Anselstetter, N. Ille, H. Bornfleth, S. Geißelsöder, C. Uhl","doi":"10.1109/ICASSPW59220.2023.10193167","DOIUrl":null,"url":null,"abstract":"A new topology based feature extraction method for classification of interictal epileptiform discharges (IEDs) in EEG recordings from patients with epilepsy is proposed. After dimension reduction of the recorded EEG signal, using dynamical component analysis (DyCA) or principal component analysis (PCA), a persistent homology analysis of the resulting phase space trajectories is performed. Features are extracted from the persistent homology analysis and used to train and evaluate a support vector machine (SVM). Classification results based on these persistent features are compared with statistical features of the dimension-reduced signals and combinations of all of these features. Combining the persistent and statistical features improves the results (accuracy 94.7 %) compared to using only statistical feature extraction, whereas applying only persistent features does not achieve sufficient performance. For this classification example the choice of the dimension reduction technique does not significantly influence the classification performance of the algorithm.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new topology based feature extraction method for classification of interictal epileptiform discharges (IEDs) in EEG recordings from patients with epilepsy is proposed. After dimension reduction of the recorded EEG signal, using dynamical component analysis (DyCA) or principal component analysis (PCA), a persistent homology analysis of the resulting phase space trajectories is performed. Features are extracted from the persistent homology analysis and used to train and evaluate a support vector machine (SVM). Classification results based on these persistent features are compared with statistical features of the dimension-reduced signals and combinations of all of these features. Combining the persistent and statistical features improves the results (accuracy 94.7 %) compared to using only statistical feature extraction, whereas applying only persistent features does not achieve sufficient performance. For this classification example the choice of the dimension reduction technique does not significantly influence the classification performance of the algorithm.
高维脑电图信号低维相空间轨迹拓扑分析用于癫痫样间期放电分类
提出了一种新的基于拓扑的癫痫样放电(IEDs)特征提取方法。在对记录的脑电信号进行降维后,使用动态成分分析(DyCA)或主成分分析(PCA),对得到的相空间轨迹进行持久的同源性分析。从持续同源性分析中提取特征,并用于训练和评估支持向量机(SVM)。将基于这些持久特征的分类结果与降维信号的统计特征以及所有这些特征的组合进行比较。与仅使用统计特征提取相比,将持久特征和统计特征相结合可以提高结果(准确率94.7%),而仅应用持久特征并不能获得足够的性能。对于本分类示例,降维技术的选择对算法的分类性能没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信