Packet loss rate monitoring model of IoT based on differential evolution algorithm

Web Intell. Pub Date : 2021-11-18 DOI:10.3233/web-210468
Yinghua Feng, Wei Yang
{"title":"Packet loss rate monitoring model of IoT based on differential evolution algorithm","authors":"Yinghua Feng, Wei Yang","doi":"10.3233/web-210468","DOIUrl":null,"url":null,"abstract":"In order to overcome the problems of high energy consumption and low execution efficiency of traditional Internet of things (IOT) packet loss rate monitoring model, a new packet loss rate monitoring model based on differential evolution algorithm is proposed. The similarity between each data point in the data space of the Internet of things is set as the data gravity. On the basis of the data gravity, combined with the law of gravity in the data space, the gravity of different data is calculated. At the same time, the size of the data gravity is compared, and the data are classified. Through the classification results, the packet loss rate monitoring model of the Internet of things is established. Differential evolution algorithm is used to solve the model to obtain the best monitoring scheme to ensure the security of network data transmission. The experimental results show that the proposed model can effectively reduce the data acquisition overhead and energy consumption, and improve the execution efficiency of the model. The maximum monitoring efficiency is 99.74%.","PeriodicalId":245783,"journal":{"name":"Web Intell.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-210468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to overcome the problems of high energy consumption and low execution efficiency of traditional Internet of things (IOT) packet loss rate monitoring model, a new packet loss rate monitoring model based on differential evolution algorithm is proposed. The similarity between each data point in the data space of the Internet of things is set as the data gravity. On the basis of the data gravity, combined with the law of gravity in the data space, the gravity of different data is calculated. At the same time, the size of the data gravity is compared, and the data are classified. Through the classification results, the packet loss rate monitoring model of the Internet of things is established. Differential evolution algorithm is used to solve the model to obtain the best monitoring scheme to ensure the security of network data transmission. The experimental results show that the proposed model can effectively reduce the data acquisition overhead and energy consumption, and improve the execution efficiency of the model. The maximum monitoring efficiency is 99.74%.
基于差分进化算法的物联网丢包率监测模型
针对传统物联网(IOT)丢包率监测模型能耗高、执行效率低等问题,提出了一种基于差分进化算法的丢包率监测模型。将物联网数据空间中各数据点之间的相似度设为数据引力。在数据引力的基础上,结合数据空间的引力规律,计算不同数据的引力。同时对数据重力大小进行比较,并对数据进行分类。通过分类结果,建立了物联网丢包率监测模型。采用差分进化算法对模型进行求解,得到保证网络数据传输安全的最佳监控方案。实验结果表明,该模型能有效降低数据采集开销和能耗,提高模型的执行效率。监控效率最高可达99.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信