Shrink AutoEncoder for Federated Learning-based IoT Anomaly Detection

Thai An Vu, Tuan Phong Tran, Ly Vu, Quang-Uy Nguyen
{"title":"Shrink AutoEncoder for Federated Learning-based IoT Anomaly Detection","authors":"Thai An Vu, Tuan Phong Tran, Ly Vu, Quang-Uy Nguyen","doi":"10.1109/NICS56915.2022.10013475","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data, unsupervised deep learning neural network models, such as variations of AutoEncoder (AE), are considered effective solutions for anomaly detection in IoT devices. These models construct low-dimensional representations of input data that are utilized for classification. Nevertheless, given the enormous number of IoT devices, their intrinsic heterogeneity, and the distributed nature of the FL training process, the latent representation of the local data is distributed randomly. The determination of the global anomaly score is thus no longer accurate. To address this issue, this work provides an effective FL-based IoT anomaly detection framework with novel AutoEncoder models, namely Federated Shrink AutoEncoder (FedSAE). The proposed model forces normal data of IoT devices to nearly the origin. Thus, a universal or global anomaly score can be determined accurately for all IoT devices. The extensive experiments on the N-BaIoT dataset indicate that FedSAE may reduce the false detection rate by 1.84% compared with that of the AE-based FL frameworks for the IoT anomaly detection problem.","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS56915.2022.10013475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data, unsupervised deep learning neural network models, such as variations of AutoEncoder (AE), are considered effective solutions for anomaly detection in IoT devices. These models construct low-dimensional representations of input data that are utilized for classification. Nevertheless, given the enormous number of IoT devices, their intrinsic heterogeneity, and the distributed nature of the FL training process, the latent representation of the local data is distributed randomly. The determination of the global anomaly score is thus no longer accurate. To address this issue, this work provides an effective FL-based IoT anomaly detection framework with novel AutoEncoder models, namely Federated Shrink AutoEncoder (FedSAE). The proposed model forces normal data of IoT devices to nearly the origin. Thus, a universal or global anomaly score can be determined accurately for all IoT devices. The extensive experiments on the N-BaIoT dataset indicate that FedSAE may reduce the false detection rate by 1.84% compared with that of the AE-based FL frameworks for the IoT anomaly detection problem.
基于联邦学习的物联网异常检测收缩自动编码器
基于联邦学习(FL)的异常检测是一种很有前途的物联网(IoT)安全框架。由于异常数据的稀缺性,无监督深度学习神经网络模型,如AutoEncoder (AE)的变体,被认为是物联网设备异常检测的有效解决方案。这些模型构建用于分类的输入数据的低维表示。然而,考虑到物联网设备的巨大数量、它们固有的异质性以及FL训练过程的分布式性质,本地数据的潜在表示是随机分布的。因此,全球异常评分的确定不再准确。为了解决这个问题,这项工作提供了一个有效的基于fl的物联网异常检测框架,该框架具有新颖的自动编码器模型,即联邦收缩自动编码器(federalshrinkautoencoder, federsae)。提出的模型将物联网设备的正常数据强制到接近原点。因此,可以为所有物联网设备准确确定通用或全局异常评分。在N-BaIoT数据集上的大量实验表明,对于物联网异常检测问题,与基于ae的FL框架相比,FedSAE框架可将误检率降低1.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信