A Comparative Study of Real-Time Semantic Segmentation for Autonomous Driving

Mennatullah Siam, M. Gamal, Moemen Abdel-Razek, S. Yogamani, Martin Jägersand, Hong Zhang
{"title":"A Comparative Study of Real-Time Semantic Segmentation for Autonomous Driving","authors":"Mennatullah Siam, M. Gamal, Moemen Abdel-Razek, S. Yogamani, Martin Jägersand, Hong Zhang","doi":"10.1109/CVPRW.2018.00101","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is a critical module in robotics related applications, especially autonomous driving. Most of the research on semantic segmentation is focused on improving the accuracy with less attention paid to computationally efficient solutions. Majority of the efficient semantic segmentation algorithms have customized optimizations without scalability and there is no systematic way to compare them. In this paper, we present a real-time segmentation benchmarking framework and study various segmentation algorithms for autonomous driving. We implemented a generic meta-architecture via a decoupled design where different types of encoders and decoders can be plugged in independently. We provide several example encoders including VGG16, Resnet18, MobileNet, and ShuffleNet and decoders including SkipNet, UNet and Dilation Frontend. The framework is scalable for addition of new encoders and decoders developed in the community for other vision tasks. We performed detailed experimental analysis on cityscapes dataset for various combinations of encoder and decoder. The modular framework enabled rapid prototyping of a custom efficient architecture which provides ~x143 GFLOPs reduction compared to SegNet and runs real-time at ~15 fps on NVIDIA Jetson TX2. The source code of the framework is publicly available.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

Semantic segmentation is a critical module in robotics related applications, especially autonomous driving. Most of the research on semantic segmentation is focused on improving the accuracy with less attention paid to computationally efficient solutions. Majority of the efficient semantic segmentation algorithms have customized optimizations without scalability and there is no systematic way to compare them. In this paper, we present a real-time segmentation benchmarking framework and study various segmentation algorithms for autonomous driving. We implemented a generic meta-architecture via a decoupled design where different types of encoders and decoders can be plugged in independently. We provide several example encoders including VGG16, Resnet18, MobileNet, and ShuffleNet and decoders including SkipNet, UNet and Dilation Frontend. The framework is scalable for addition of new encoders and decoders developed in the community for other vision tasks. We performed detailed experimental analysis on cityscapes dataset for various combinations of encoder and decoder. The modular framework enabled rapid prototyping of a custom efficient architecture which provides ~x143 GFLOPs reduction compared to SegNet and runs real-time at ~15 fps on NVIDIA Jetson TX2. The source code of the framework is publicly available.
自动驾驶实时语义分割的比较研究
语义分割是机器人相关应用,尤其是自动驾驶中的一个关键模块。大多数语义分割的研究都集中在提高准确率上,而很少关注计算效率的解决方案。大多数高效的语义分割算法都是自定义的优化,没有可扩展性,也没有系统的方法来比较它们。在本文中,我们提出了一个实时分割基准框架,并研究了各种自动驾驶分割算法。我们通过解耦设计实现了一个通用的元架构,其中不同类型的编码器和解码器可以独立插入。我们提供了几个示例编码器,包括VGG16, Resnet18, MobileNet和ShuffleNet和解码器,包括SkipNet, UNet和Dilation Frontend。该框架是可扩展的,可以为社区开发的其他视觉任务添加新的编码器和解码器。我们对不同编码器和解码器组合的城市景观数据集进行了详细的实验分析。模块化框架使自定义高效架构的快速原型设计成为可能,与SegNet相比,该架构提供了~x143 GFLOPs降低,并在NVIDIA Jetson TX2上以~15 fps的速度实时运行。该框架的源代码是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信