Model-Free Control of Time-Delay Systems via Policy Gradient Based Adaptive Learning Algorithm

Yongwei Zhang, Shunchao Zhang, Bo Zhao, Derong Liu
{"title":"Model-Free Control of Time-Delay Systems via Policy Gradient Based Adaptive Learning Algorithm","authors":"Yongwei Zhang, Shunchao Zhang, Bo Zhao, Derong Liu","doi":"10.1109/IAI50351.2020.9262213","DOIUrl":null,"url":null,"abstract":"This paper develops a model-free optimal control scheme for discrete-time nonlinear systems with time-delays by using the policy gradient based adaptive learning (PGAL) algorithm. By using the measured data, the PGAL algorithm is employed to design an optimal controller for discrete-time systems. Compared with the traditional adaptive dynamic programming algorithms, the proposed method is a data-based one and improves the control input with policy gradient. The convergence of the PGAL algorithm is proved by demonstrating that the value function converges to optimum. To implement the PGAL algorithm, an actor-critic framework is constructed to learn the optimal control law and the value function. Finally, a simulation example is presented to demonstrate the effectiveness of the developed method.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a model-free optimal control scheme for discrete-time nonlinear systems with time-delays by using the policy gradient based adaptive learning (PGAL) algorithm. By using the measured data, the PGAL algorithm is employed to design an optimal controller for discrete-time systems. Compared with the traditional adaptive dynamic programming algorithms, the proposed method is a data-based one and improves the control input with policy gradient. The convergence of the PGAL algorithm is proved by demonstrating that the value function converges to optimum. To implement the PGAL algorithm, an actor-critic framework is constructed to learn the optimal control law and the value function. Finally, a simulation example is presented to demonstrate the effectiveness of the developed method.
基于策略梯度自适应学习算法的时滞系统无模型控制
利用基于策略梯度的自适应学习(PGAL)算法,提出了一种具有时滞的离散非线性系统的无模型最优控制方案。利用实测数据,采用PGAL算法设计离散系统的最优控制器。与传统的自适应动态规划算法相比,该方法是一种基于数据的自适应动态规划算法,并利用策略梯度改进了控制输入。通过值函数收敛到最优,证明了PGAL算法的收敛性。为了实现PGAL算法,构造了一个actor-critic框架来学习最优控制律和值函数。最后,通过仿真实例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信