Bernd Dudzik, J. Broekens, Mark Antonius Neerincx, H. Hung
{"title":"Exploring Personal Memories and Video Content as Context for Facial Behavior in Predictions of Video-Induced Emotions","authors":"Bernd Dudzik, J. Broekens, Mark Antonius Neerincx, H. Hung","doi":"10.1145/3382507.3418814","DOIUrl":null,"url":null,"abstract":"Empirical evidence suggests that the emotional meaning of facial behavior in isolation is often ambiguous in real-world conditions. While humans complement interpretations of others' faces with additional reasoning about context, automated approaches rarely display such context-sensitivity. Empirical findings indicate that the personal memories triggered by videos are crucial for predicting viewers' emotional response to such videos ?- in some cases, even more so than the video's audiovisual content. In this article, we explore the benefits of personal memories as context for facial behavior analysis. We conduct a series of multimodal machine learning experiments combining the automatic analysis of video-viewers' faces with that of two types of context information for affective predictions: \\beginenumerate* [label=(\\arabic*)] \\item self-reported free-text descriptions of triggered memories and \\item a video's audiovisual content \\endenumerate*. Our results demonstrate that both sources of context provide models with information about variation in viewers' affective responses that complement facial analysis and each other.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Empirical evidence suggests that the emotional meaning of facial behavior in isolation is often ambiguous in real-world conditions. While humans complement interpretations of others' faces with additional reasoning about context, automated approaches rarely display such context-sensitivity. Empirical findings indicate that the personal memories triggered by videos are crucial for predicting viewers' emotional response to such videos ?- in some cases, even more so than the video's audiovisual content. In this article, we explore the benefits of personal memories as context for facial behavior analysis. We conduct a series of multimodal machine learning experiments combining the automatic analysis of video-viewers' faces with that of two types of context information for affective predictions: \beginenumerate* [label=(\arabic*)] \item self-reported free-text descriptions of triggered memories and \item a video's audiovisual content \endenumerate*. Our results demonstrate that both sources of context provide models with information about variation in viewers' affective responses that complement facial analysis and each other.