Approximation algorithms for covering vertices by long paths

Mingyang Gong, Brett Edgar, Jing Fan, Guohui Lin, Eiji Miyano
{"title":"Approximation algorithms for covering vertices by long paths","authors":"Mingyang Gong, Brett Edgar, Jing Fan, Guohui Lin, Eiji Miyano","doi":"10.48550/arXiv.2208.03294","DOIUrl":null,"url":null,"abstract":"Given a graph, the general problem to cover the maximum number of vertices by a collection of vertex-disjoint long paths seemingly escapes from the literature. A path containing at least k vertices is considered long. When k ≤ 3, the problem is polynomial time solvable; when k is the total number of vertices, the problem reduces to the Hamiltonian path problem, which is NP-complete. For a fixed k ≥ 4, the problem is NP-hard and the best known approximation algorithm for the weighted set packing problem implies a k -approximation algorithm. To the best of our knowledge, there is no approximation algorithm directly designed for the general problem; when k = 4, the problem admits a 4-approximation algorithm which was presented recently. We propose the first (0 . 4394 k + O (1))-approximation algorithm for the general problem and an improved 2-approximation algorithm when k = 4. Both algorithms are based on local improvement, and their theoretical performance analyses are done via amortization and their practical performance is examined through simulation studies.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.03294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a graph, the general problem to cover the maximum number of vertices by a collection of vertex-disjoint long paths seemingly escapes from the literature. A path containing at least k vertices is considered long. When k ≤ 3, the problem is polynomial time solvable; when k is the total number of vertices, the problem reduces to the Hamiltonian path problem, which is NP-complete. For a fixed k ≥ 4, the problem is NP-hard and the best known approximation algorithm for the weighted set packing problem implies a k -approximation algorithm. To the best of our knowledge, there is no approximation algorithm directly designed for the general problem; when k = 4, the problem admits a 4-approximation algorithm which was presented recently. We propose the first (0 . 4394 k + O (1))-approximation algorithm for the general problem and an improved 2-approximation algorithm when k = 4. Both algorithms are based on local improvement, and their theoretical performance analyses are done via amortization and their practical performance is examined through simulation studies.
用长路径覆盖顶点的近似算法
给定一个图,通过一组顶点不相交的长路径来覆盖最大顶点数的一般问题似乎从文献中逃脱了。包含至少k个顶点的路径被认为是长路径。当k≤3时,问题在多项式时间内可解;当k为顶点总数时,问题就变成了np完全的哈密顿路径问题。对于固定的k≥4,问题是np困难的,最著名的加权集填充问题的近似算法隐含一个k近似算法。据我们所知,没有直接为一般问题设计的近似算法;当k = 4时,该问题采用最近提出的4逼近算法。我们提出第一个(0)。4394一般问题的k + O(1) -逼近算法和k = 4时改进的2-逼近算法。这两种算法都是基于局部改进的,通过摊销分析了它们的理论性能,并通过仿真研究检验了它们的实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信