Chien-Lun Chen, Sara Babakniya, Marco Paolieri, L. Golubchik
{"title":"Defending against Poisoning Backdoor Attacks on Federated Meta-learning","authors":"Chien-Lun Chen, Sara Babakniya, Marco Paolieri, L. Golubchik","doi":"10.1145/3523062","DOIUrl":null,"url":null,"abstract":"Federated learning allows multiple users to collaboratively train a shared classification model while preserving data privacy. This approach, where model updates are aggregated by a central server, was shown to be vulnerable to poisoning backdoor attacks: a malicious user can alter the shared model to arbitrarily classify specific inputs from a given class. In this article, we analyze the effects of backdoor attacks on federated meta-learning, where users train a model that can be adapted to different sets of output classes using only a few examples. While the ability to adapt could, in principle, make federated learning frameworks more robust to backdoor attacks (when new training examples are benign), we find that even one-shot attacks can be very successful and persist after additional training. To address these vulnerabilities, we propose a defense mechanism inspired by matching networks, where the class of an input is predicted from the similarity of its features with a support set of labeled examples. By removing the decision logic from the model shared with the federation, the success and persistence of backdoor attacks are greatly reduced.","PeriodicalId":123526,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology (TIST)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology (TIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Federated learning allows multiple users to collaboratively train a shared classification model while preserving data privacy. This approach, where model updates are aggregated by a central server, was shown to be vulnerable to poisoning backdoor attacks: a malicious user can alter the shared model to arbitrarily classify specific inputs from a given class. In this article, we analyze the effects of backdoor attacks on federated meta-learning, where users train a model that can be adapted to different sets of output classes using only a few examples. While the ability to adapt could, in principle, make federated learning frameworks more robust to backdoor attacks (when new training examples are benign), we find that even one-shot attacks can be very successful and persist after additional training. To address these vulnerabilities, we propose a defense mechanism inspired by matching networks, where the class of an input is predicted from the similarity of its features with a support set of labeled examples. By removing the decision logic from the model shared with the federation, the success and persistence of backdoor attacks are greatly reduced.