Man-Made Structure Segmentation using Gaussian Processes and Wavelet Features

Hang Zhou, D. Suter
{"title":"Man-Made Structure Segmentation using Gaussian Processes and Wavelet Features","authors":"Hang Zhou, D. Suter","doi":"10.1109/ICIP.2007.4380026","DOIUrl":null,"url":null,"abstract":"We apply Gaussian process classification (GPC) to man-made structure segmentation, treated as a two class problem. GPC is a discriminative approach, and thus focuses on modelling the posterior directly. It relaxes the strong assumption of conditional independence of the observed data (generally used in a generative model). In addition, wavelet transform features, which are effective in describing directional textures, are incorporated in the feature vector. Satisfactory results have been obtained which show the effectiveness of our approach.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"48 30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4380026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We apply Gaussian process classification (GPC) to man-made structure segmentation, treated as a two class problem. GPC is a discriminative approach, and thus focuses on modelling the posterior directly. It relaxes the strong assumption of conditional independence of the observed data (generally used in a generative model). In addition, wavelet transform features, which are effective in describing directional textures, are incorporated in the feature vector. Satisfactory results have been obtained which show the effectiveness of our approach.
基于高斯过程和小波特征的人工结构分割
我们将高斯过程分类(GPC)应用于人造结构分割,并将其作为一个两类问题来处理。GPC是一种判别方法,因此侧重于直接对后验进行建模。它放松了对观测数据的条件独立性的强假设(通常用于生成模型)。此外,在特征向量中加入了有效描述纹理方向的小波变换特征。取得了满意的结果,表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信