A Survey on Mapping of Urban Green Spaces within Remote Sensing Data Using Machine Learning & Deep Learning Techniques

Smita Sunil Burrewar, M. Haque, Tanwir Uddin Haider
{"title":"A Survey on Mapping of Urban Green Spaces within Remote Sensing Data Using Machine Learning & Deep Learning Techniques","authors":"Smita Sunil Burrewar, M. Haque, Tanwir Uddin Haider","doi":"10.1109/ICCAE56788.2023.10111467","DOIUrl":null,"url":null,"abstract":"For environmental protection, urban planning, monitoring, and management of the urban ecosystem, mapping urban green spaces is a crucial undertaking. A vital source of information for United Nations Sustainable Development Goal 11.7 could come from urban green space mapping. The standard method of mapping urban green spaces requires field measurements and takes a lot of time. It is also important to update urban green space maps periodically because urban green spaces can change quickly over time due to development. With the advent of high-resolution satellite sensors like Sentinel-1 and Sentinel-2, a large number of remote sensing images may be gathered, providing quick and precise information over urban areas. This work intends to offer a new perspective on how crowd sourced geospatial big data and remote sensing may be combined to enhance the mapping of urban green spaces, including time optimization and accurate information through machine learning and deep learning. For the revitalization of cities, this data will be valuable. Remote sensing imagery data can be classified using machine learning techniques like Support vector machines (SVM), Random forests (RF), and Naive Bayes (NB). In deep learning techniques such as Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), K Nearest Neighbor (KNN), Generative Adversarial Networks (GAN), and Recurrent Neural Networks (RNN) can be used to classify remote sensing images.","PeriodicalId":406112,"journal":{"name":"2023 15th International Conference on Computer and Automation Engineering (ICCAE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Computer and Automation Engineering (ICCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAE56788.2023.10111467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For environmental protection, urban planning, monitoring, and management of the urban ecosystem, mapping urban green spaces is a crucial undertaking. A vital source of information for United Nations Sustainable Development Goal 11.7 could come from urban green space mapping. The standard method of mapping urban green spaces requires field measurements and takes a lot of time. It is also important to update urban green space maps periodically because urban green spaces can change quickly over time due to development. With the advent of high-resolution satellite sensors like Sentinel-1 and Sentinel-2, a large number of remote sensing images may be gathered, providing quick and precise information over urban areas. This work intends to offer a new perspective on how crowd sourced geospatial big data and remote sensing may be combined to enhance the mapping of urban green spaces, including time optimization and accurate information through machine learning and deep learning. For the revitalization of cities, this data will be valuable. Remote sensing imagery data can be classified using machine learning techniques like Support vector machines (SVM), Random forests (RF), and Naive Bayes (NB). In deep learning techniques such as Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), K Nearest Neighbor (KNN), Generative Adversarial Networks (GAN), and Recurrent Neural Networks (RNN) can be used to classify remote sensing images.
利用机器学习和深度学习技术在遥感数据中绘制城市绿地的研究
在环境保护、城市规划、城市生态系统监测和管理中,城市绿地测绘是一项至关重要的工作。城市绿地制图可能是实现联合国可持续发展目标11.7的一个重要信息来源。城市绿地测绘的标准方法需要实地测量,并且需要花费大量时间。定期更新城市绿地地图也很重要,因为城市绿地会随着时间的推移而迅速变化。随着Sentinel-1和Sentinel-2等高分辨率卫星传感器的出现,可以收集到大量的遥感图像,为城市地区提供快速和精确的信息。这项工作旨在为如何将众包地理空间大数据和遥感结合起来,通过机器学习和深度学习,包括时间优化和准确信息,增强城市绿地的测绘提供一个新的视角。对于城市的振兴,这些数据将是有价值的。遥感影像数据可以使用支持向量机(SVM)、随机森林(RF)和朴素贝叶斯(NB)等机器学习技术进行分类。在长短期记忆(LSTM)、卷积神经网络(CNN)、K近邻(KNN)、生成对抗网络(GAN)和循环神经网络(RNN)等深度学习技术中,可用于对遥感图像进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信