Feature Extraction for Face Recognition using Recursive Bayesian Linear Discriminant

D. Huang, C. Xiang, S. S. Ge
{"title":"Feature Extraction for Face Recognition using Recursive Bayesian Linear Discriminant","authors":"D. Huang, C. Xiang, S. S. Ge","doi":"10.1109/ISPA.2007.4383719","DOIUrl":null,"url":null,"abstract":"In this paper, we present two linear discriminant analysis algorithms (LDA), namely, recursive Bayesian linear discriminant I (or RBLD-I) and recursive Bayesian linear discriminant II (or RBLD-II), for the problem of face recognition. The favorable contribution of these two LDA algorithms is that they extract discriminative features with criterion functions directly based on minimum probability of classification error, or the Bayes error. The effectiveness of the two RBLD's are tested by application to two types of face recognition tasks: identity recognition and facial expression recognition. Experimental results show that the two RBLD's achieve superior classification performance over their fellow algorithm, recursive fisher linear discriminant (or RFLD), on Yale, ORL and Jaffe face databases.","PeriodicalId":112420,"journal":{"name":"2007 5th International Symposium on Image and Signal Processing and Analysis","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 5th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2007.4383719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present two linear discriminant analysis algorithms (LDA), namely, recursive Bayesian linear discriminant I (or RBLD-I) and recursive Bayesian linear discriminant II (or RBLD-II), for the problem of face recognition. The favorable contribution of these two LDA algorithms is that they extract discriminative features with criterion functions directly based on minimum probability of classification error, or the Bayes error. The effectiveness of the two RBLD's are tested by application to two types of face recognition tasks: identity recognition and facial expression recognition. Experimental results show that the two RBLD's achieve superior classification performance over their fellow algorithm, recursive fisher linear discriminant (or RFLD), on Yale, ORL and Jaffe face databases.
基于递归贝叶斯线性判别的人脸识别特征提取
本文针对人脸识别问题,提出了两种线性判别分析算法(LDA),即递归贝叶斯线性判别法I(或RBLD-I)和递归贝叶斯线性判别法II(或RBLD-II)。这两种LDA算法的优点在于,它们直接基于最小分类错误概率(即贝叶斯误差)提取带有准则函数的判别特征。通过对身份识别和面部表情识别两类人脸识别任务的应用,验证了两种RBLD的有效性。实验结果表明,这两种RBLD算法在Yale、ORL和Jaffe人脸数据库上的分类性能优于同类算法——递归fisher线性判别(RFLD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信