{"title":"Brief History, Main Achievements and Prospect of Mutation Breeding in Korea","authors":"Si-Yong Kang, S. H. Kim, J. Ryu, and Jin-Baek Kim","doi":"10.9787/kjbs.2020.52.s.49","DOIUrl":null,"url":null,"abstract":"Research on mutation breeding started in the early 1960s by researchers at the Atomic Energy Research Institute, Rural Development Administration (RDA) and several universities in Korea. The Radiation Agriculture Research Institute (RARI) was established in 1966, and studies of mutation breeding using radiation were actively conducted for a while. RARI was merged into the Korea Atomic Energy Research Institute (KAERI) and RDA in 1973, and radiation breeding research was neglected by the two agencies. In the 1980s, the relevant research department was lost, which resulted in a recession period of radiation breeding research. The Advanced Radiation Research Institute (ARTI), under the KAERI, was established to promote radiation research and the industry in 2005, which led to the activation of radiation breeding research. Then, the Radiation Breeding Research Center (RBRC) at the ARTI was established with support of the Ministry of Agriculture, Food and Rural Affairs in 2013. Recently, the importance of seed and genetic resources has been emphasized in Korea, and many institutes, companies and private breeders are interested in mutation breeding. The RBRC is trying to develop advanced radiation breeding techniques and new genetic resources using mutation techniques combined with bio-tech. This is to deal with the loss of biodiversity due to global climate change and environmental degradation, growing global demand for food and bio-energy, and to strengthen the protection for new plant varieties. Approximately 180 new mutant varieties were developed and registered officially in Korea. Recently, new mutant varieties, especially of flowers and ornamental plants, have quickly increased and are being commercialized, mainly by private company and breeders.","PeriodicalId":448090,"journal":{"name":"Korean Journal of Breeding","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Breeding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9787/kjbs.2020.52.s.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Research on mutation breeding started in the early 1960s by researchers at the Atomic Energy Research Institute, Rural Development Administration (RDA) and several universities in Korea. The Radiation Agriculture Research Institute (RARI) was established in 1966, and studies of mutation breeding using radiation were actively conducted for a while. RARI was merged into the Korea Atomic Energy Research Institute (KAERI) and RDA in 1973, and radiation breeding research was neglected by the two agencies. In the 1980s, the relevant research department was lost, which resulted in a recession period of radiation breeding research. The Advanced Radiation Research Institute (ARTI), under the KAERI, was established to promote radiation research and the industry in 2005, which led to the activation of radiation breeding research. Then, the Radiation Breeding Research Center (RBRC) at the ARTI was established with support of the Ministry of Agriculture, Food and Rural Affairs in 2013. Recently, the importance of seed and genetic resources has been emphasized in Korea, and many institutes, companies and private breeders are interested in mutation breeding. The RBRC is trying to develop advanced radiation breeding techniques and new genetic resources using mutation techniques combined with bio-tech. This is to deal with the loss of biodiversity due to global climate change and environmental degradation, growing global demand for food and bio-energy, and to strengthen the protection for new plant varieties. Approximately 180 new mutant varieties were developed and registered officially in Korea. Recently, new mutant varieties, especially of flowers and ornamental plants, have quickly increased and are being commercialized, mainly by private company and breeders.