Power-Efficient MLOA for error resilient applications

Sahith Guturu, Anil Kumar Uppugunduru, S. Thota, Syed Ershad Ahmed
{"title":"Power-Efficient MLOA for error resilient applications","authors":"Sahith Guturu, Anil Kumar Uppugunduru, S. Thota, Syed Ershad Ahmed","doi":"10.1109/iSES52644.2021.00029","DOIUrl":null,"url":null,"abstract":"Approximate Computing is a paradigm shift to meet the future demands of compute-intensive tasks such as media processing, data mining, and recognition. These applications can tolerate errors up to a specific limit. In such applications, addition is one unit that is power-hungry by approximating the adder savings in area, power, and delay can be achieved. This paper presents a technique of approximating the least significant portion in an adder while improvement in accuracy is achieved using OR-based logic. This results in a reduction of area and power without significant compromise in accuracy. Based on the approximation region, we propose three designs with a tradeoff in computation complexity and accuracy. The results prove the efficacy of the proposed designs and an improvement up to 51.39%, improvement in power w.r.t existing designs.","PeriodicalId":293167,"journal":{"name":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSES52644.2021.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Approximate Computing is a paradigm shift to meet the future demands of compute-intensive tasks such as media processing, data mining, and recognition. These applications can tolerate errors up to a specific limit. In such applications, addition is one unit that is power-hungry by approximating the adder savings in area, power, and delay can be achieved. This paper presents a technique of approximating the least significant portion in an adder while improvement in accuracy is achieved using OR-based logic. This results in a reduction of area and power without significant compromise in accuracy. Based on the approximation region, we propose three designs with a tradeoff in computation complexity and accuracy. The results prove the efficacy of the proposed designs and an improvement up to 51.39%, improvement in power w.r.t existing designs.
高效节能的MLOA,用于纠错应用程序
近似计算是一种范式转变,以满足未来计算密集型任务(如媒体处理、数据挖掘和识别)的需求。这些应用程序可以容忍错误达到特定的限制。在这样的应用中,加法是一个耗电的单元,通过近似加法器在面积、功率和延迟方面的节省可以实现。本文提出了一种逼近加法器中最不显著部分的技术,同时使用基于或的逻辑实现了精度的提高。这导致面积和功率的减少,而精度没有显著的妥协。基于近似区域,我们提出了三种在计算复杂度和精度上进行权衡的设计。结果证明了所提设计的有效性,改进功率达到51.39%,比现有设计的功率提高了一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信