Modelling smartphone usage: a markov state transition model

V. Kostakos, Denzil Ferreira, Jorge Gonçalves, S. Hosio
{"title":"Modelling smartphone usage: a markov state transition model","authors":"V. Kostakos, Denzil Ferreira, Jorge Gonçalves, S. Hosio","doi":"10.1145/2971648.2971669","DOIUrl":null,"url":null,"abstract":"We develop a Markov state transition model of smartphone screen use. We collected use traces from real-world users during a 3-month naturalistic deployment via an app-store. These traces were used to develop an analytical model which can be used to probabilistically model or predict, at runtime, how a user interacts with their mobile phone, and for how long. Unlike classification-driven machine learning approaches, our analytical model can be interrogated under unlimited conditions, making it suitable for a wide range of applications including more realistic automated testing and improving operating system management of resources.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"421 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We develop a Markov state transition model of smartphone screen use. We collected use traces from real-world users during a 3-month naturalistic deployment via an app-store. These traces were used to develop an analytical model which can be used to probabilistically model or predict, at runtime, how a user interacts with their mobile phone, and for how long. Unlike classification-driven machine learning approaches, our analytical model can be interrogated under unlimited conditions, making it suitable for a wide range of applications including more realistic automated testing and improving operating system management of resources.
智能手机使用建模:马尔科夫状态转换模型
我们开发了智能手机屏幕使用的马尔可夫状态转移模型。我们通过应用商店在3个月的自然部署期间收集了真实世界用户的使用轨迹。这些痕迹被用来开发一个分析模型,该模型可用于在运行时概率建模或预测用户如何与他们的手机交互,以及交互多长时间。与分类驱动的机器学习方法不同,我们的分析模型可以在无限条件下进行查询,使其适用于广泛的应用,包括更现实的自动化测试和改进操作系统的资源管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信