Variational Autoencoder Based Unsupervised Domain Adaptation For Semantic Segmentation

Zongyao Li, Ren Togo, Takahiro Ogawa, M. Haseyama
{"title":"Variational Autoencoder Based Unsupervised Domain Adaptation For Semantic Segmentation","authors":"Zongyao Li, Ren Togo, Takahiro Ogawa, M. Haseyama","doi":"10.1109/ICIP40778.2020.9190973","DOIUrl":null,"url":null,"abstract":"Unsupervised domain adaptation, which transfers supervised knowledge from a labeled domain to an unlabeled domain, remains a tough problem in the field of computer vision, especially for semantic segmentation. Some methods inspired by adversarial learning and semi-supervised learning have been developed for unsupervised domain adaptation in semantic segmentation and achieved outstanding performances. In this paper, we propose a novel method for this task. Like adversarial learning-based methods using a discriminator to align the feature distributions from different domains, we employ a variational autoencoder to get to the same destination but in a non-adversarial manner. Since the two approaches are compatible, we also integrate an adversarial loss into our method. By further introducing pseudo labels, our method can achieve state-of-the-art performances on two benchmark adaptation scenarios, GTA5-toCITYSCAPES and SYNTHIA-to-CITYSCAPES.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Unsupervised domain adaptation, which transfers supervised knowledge from a labeled domain to an unlabeled domain, remains a tough problem in the field of computer vision, especially for semantic segmentation. Some methods inspired by adversarial learning and semi-supervised learning have been developed for unsupervised domain adaptation in semantic segmentation and achieved outstanding performances. In this paper, we propose a novel method for this task. Like adversarial learning-based methods using a discriminator to align the feature distributions from different domains, we employ a variational autoencoder to get to the same destination but in a non-adversarial manner. Since the two approaches are compatible, we also integrate an adversarial loss into our method. By further introducing pseudo labels, our method can achieve state-of-the-art performances on two benchmark adaptation scenarios, GTA5-toCITYSCAPES and SYNTHIA-to-CITYSCAPES.
基于变分自编码器的无监督域自适应语义分割
无监督域自适应是将有监督知识从有标记的域转移到无标记的域,是计算机视觉领域的一个难题,特别是在语义分割领域。在对抗学习和半监督学习的启发下,针对语义分割中的无监督域自适应问题提出了一些方法,并取得了较好的效果。在本文中,我们提出了一种新的方法来完成这项任务。就像基于对抗性学习的方法使用鉴别器来对齐来自不同领域的特征分布一样,我们使用变分自编码器以非对抗性的方式到达相同的目的地。由于这两种方法是兼容的,我们还将对抗性损失集成到我们的方法中。通过进一步引入伪标签,我们的方法可以在gta5 - tocityscape和syntia -to cityscape两个基准适应场景上实现最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信