Measurement of a Non-Kolmogorov Structure Function

T. Nicholls, N. Wooder, C. Dainty
{"title":"Measurement of a Non-Kolmogorov Structure Function","authors":"T. Nicholls, N. Wooder, C. Dainty","doi":"10.1364/adop.1996.awd.15","DOIUrl":null,"url":null,"abstract":"The structure function of atmospheric phase fluctuations is defined as follows: A generalised model for the structure function of phase is: ℛ\n 0\n is related to the size of the long-exposure image formed by a large-aperture telescope, while γ\n ß\n is a parameter which depends on ß and on the precise definition of ℛ\n 0\n The widely-used Kolmogorov model of refractive index fluctuations [1] predicts a value of 11/3 for ß; in this case, with the appropriate definition, ℛ0 is equivalent to r0, the Fried parameter [2], Under the Kolmogorov assumption, the parameter r0 entirely describes the time-averaged statistics of the phase fluctuations. A knowledge of r0 can be used, for example, to predict how the energy in the phase fluctuations is distributed between the Zernike modes.","PeriodicalId":256393,"journal":{"name":"Adaptive Optics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/adop.1996.awd.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The structure function of atmospheric phase fluctuations is defined as follows: A generalised model for the structure function of phase is: ℛ 0 is related to the size of the long-exposure image formed by a large-aperture telescope, while γ ß is a parameter which depends on ß and on the precise definition of ℛ 0 The widely-used Kolmogorov model of refractive index fluctuations [1] predicts a value of 11/3 for ß; in this case, with the appropriate definition, ℛ0 is equivalent to r0, the Fried parameter [2], Under the Kolmogorov assumption, the parameter r0 entirely describes the time-averaged statistics of the phase fluctuations. A knowledge of r0 can be used, for example, to predict how the energy in the phase fluctuations is distributed between the Zernike modes.
非kolmogorov结构函数的测量
大气相位波动的结构函数定义如下:相位结构函数的广义模型为:∑0与大口径望远镜形成的长曝光图像的大小有关,而γ ß是一个依赖于∑并依赖于∑0精确定义的参数,广泛使用的Kolmogorov折射率波动模型[1]预测∑的值为11/3;在这种情况下,只要有适当的定义,就可以使参数t1 = Fried参数r0[2],在Kolmogorov假设下,参数r0完全描述了相位涨落的时均统计量。例如,可以利用r0的知识来预测相位波动中的能量如何在泽尼克模式之间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信