David Álvarez, Kevin Sala, Marcos Maroñas, Aleix Roca, Vicencc Beltran
{"title":"Advanced synchronization techniques for task-based runtime systems","authors":"David Álvarez, Kevin Sala, Marcos Maroñas, Aleix Roca, Vicencc Beltran","doi":"10.1145/3437801.3441601","DOIUrl":null,"url":null,"abstract":"Task-based programming models like OmpSs-2 and OpenMP provide a flexible data-flow execution model to exploit dynamic, irregular and nested parallelism. Providing an efficient implementation that scales well with small granularity tasks remains a challenge, and bottlenecks can manifest in several runtime components. In this paper, we analyze the limiting factors in the scalability of a task-based runtime system and propose individual solutions for each of the challenges, including a wait-free dependency system and a novel scalable scheduler design based on delegation. We evaluate how the optimizations impact the overall performance of the runtime, both individually and in combination. We also compare the resulting runtime against state of the art OpenMP implementations, showing equivalent or better performance, especially for fine-grained tasks.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Task-based programming models like OmpSs-2 and OpenMP provide a flexible data-flow execution model to exploit dynamic, irregular and nested parallelism. Providing an efficient implementation that scales well with small granularity tasks remains a challenge, and bottlenecks can manifest in several runtime components. In this paper, we analyze the limiting factors in the scalability of a task-based runtime system and propose individual solutions for each of the challenges, including a wait-free dependency system and a novel scalable scheduler design based on delegation. We evaluate how the optimizations impact the overall performance of the runtime, both individually and in combination. We also compare the resulting runtime against state of the art OpenMP implementations, showing equivalent or better performance, especially for fine-grained tasks.