A zero-sum property for the KECCAK-f permutation with 18 rounds

Christina Boura, A. Canteaut
{"title":"A zero-sum property for the KECCAK-f permutation with 18 rounds","authors":"Christina Boura, A. Canteaut","doi":"10.1109/ISIT.2010.5513442","DOIUrl":null,"url":null,"abstract":"A new type of distinguishing property, named the zero-sum property has been recently presented by Aumasson and Meier [1]. It has been applied to the inner permutation of the hash function KECCAK and it has led to a distinguishing property for the KECCAK-f permutation up to 16 rounds, out of 24 in total. Here, we additionally exploit some spectral properties of the KECCAK-f permutation and we improve the previously known upper bounds on the degree of the inverse permutation after a certain number of rounds. This result enables us to extend the zero-sum property to 18 rounds of the KECCAK-f permutation, which was the number of rounds in the previous version of KECCAK submitted to the SHA-3 competition.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

A new type of distinguishing property, named the zero-sum property has been recently presented by Aumasson and Meier [1]. It has been applied to the inner permutation of the hash function KECCAK and it has led to a distinguishing property for the KECCAK-f permutation up to 16 rounds, out of 24 in total. Here, we additionally exploit some spectral properties of the KECCAK-f permutation and we improve the previously known upper bounds on the degree of the inverse permutation after a certain number of rounds. This result enables us to extend the zero-sum property to 18 rounds of the KECCAK-f permutation, which was the number of rounds in the previous version of KECCAK submitted to the SHA-3 competition.
18发KECCAK-f排列的零和性质
最近,Aumasson和Meier[1]提出了一种新的区分性质,称为零和性质。它已被应用于哈希函数KECCAK的内部排列,并导致了KECCAK-f排列最多16轮的区别性质,总共24轮。在这里,我们进一步利用了KECCAK-f置换的一些谱性质,并改进了之前已知的在一定轮数后逆置换程度的上界。这一结果使我们能够将零和性质扩展到KECCAK-f排列的18轮,这是之前版本的KECCAK提交给SHA-3竞赛的轮数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信