{"title":"Structured Gaussian mixture model based product VQ","authors":"S. Chatterjee, M. Skoglund","doi":"10.5281/ZENODO.41946","DOIUrl":null,"url":null,"abstract":"In this paper, the Gaussian mixture model (GMM) based parametric framework is used to design a product vector quantization (PVQ) method that provides rate-distortion (R/D) performance optimality and bitrate scalability. We use a GMM consisting of a large number of Gaussian mixtures and invoke a block isotropic structure on the covariance matrices of the Gaussian mixtures. Using such a structured GMM, we design an optimum and bitrate scalable PVQ, namely an split (SVQ), for each Gaussian mixture. The use of an SVQ allows for a trade-off between complexity and R/D performance that spans the two extreme limits provided by an optimum scalar quantizer and an unconstrained vector quantizer. The efficacy of the new GMM based PVQ (GM-PVQ) method is demonstrated for the application of speech spectrum quantization.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.41946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, the Gaussian mixture model (GMM) based parametric framework is used to design a product vector quantization (PVQ) method that provides rate-distortion (R/D) performance optimality and bitrate scalability. We use a GMM consisting of a large number of Gaussian mixtures and invoke a block isotropic structure on the covariance matrices of the Gaussian mixtures. Using such a structured GMM, we design an optimum and bitrate scalable PVQ, namely an split (SVQ), for each Gaussian mixture. The use of an SVQ allows for a trade-off between complexity and R/D performance that spans the two extreme limits provided by an optimum scalar quantizer and an unconstrained vector quantizer. The efficacy of the new GMM based PVQ (GM-PVQ) method is demonstrated for the application of speech spectrum quantization.