Structured Gaussian mixture model based product VQ

S. Chatterjee, M. Skoglund
{"title":"Structured Gaussian mixture model based product VQ","authors":"S. Chatterjee, M. Skoglund","doi":"10.5281/ZENODO.41946","DOIUrl":null,"url":null,"abstract":"In this paper, the Gaussian mixture model (GMM) based parametric framework is used to design a product vector quantization (PVQ) method that provides rate-distortion (R/D) performance optimality and bitrate scalability. We use a GMM consisting of a large number of Gaussian mixtures and invoke a block isotropic structure on the covariance matrices of the Gaussian mixtures. Using such a structured GMM, we design an optimum and bitrate scalable PVQ, namely an split (SVQ), for each Gaussian mixture. The use of an SVQ allows for a trade-off between complexity and R/D performance that spans the two extreme limits provided by an optimum scalar quantizer and an unconstrained vector quantizer. The efficacy of the new GMM based PVQ (GM-PVQ) method is demonstrated for the application of speech spectrum quantization.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.41946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the Gaussian mixture model (GMM) based parametric framework is used to design a product vector quantization (PVQ) method that provides rate-distortion (R/D) performance optimality and bitrate scalability. We use a GMM consisting of a large number of Gaussian mixtures and invoke a block isotropic structure on the covariance matrices of the Gaussian mixtures. Using such a structured GMM, we design an optimum and bitrate scalable PVQ, namely an split (SVQ), for each Gaussian mixture. The use of an SVQ allows for a trade-off between complexity and R/D performance that spans the two extreme limits provided by an optimum scalar quantizer and an unconstrained vector quantizer. The efficacy of the new GMM based PVQ (GM-PVQ) method is demonstrated for the application of speech spectrum quantization.
基于结构化高斯混合模型的产品VQ
本文采用基于高斯混合模型(GMM)的参数化框架,设计了一种具有率失真(R/D)性能最优性和比特率可扩展性的积矢量量化(PVQ)方法。我们使用由大量高斯混合物组成的GMM,并在高斯混合物的协方差矩阵上调用块各向同性结构。使用这种结构化的GMM,我们为每个高斯混合设计了一个最优的和比特率可扩展的PVQ,即分割(SVQ)。SVQ的使用允许在复杂性和R/D性能之间进行权衡,这跨越了最佳标量量化器和无约束矢量量化器提供的两个极限。在语音频谱量化的应用中,验证了基于GMM的PVQ方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信