Online implementation of top-down SSVEP-BMI

Min-Hee Ahn, Byoung-Kyong Min
{"title":"Online implementation of top-down SSVEP-BMI","authors":"Min-Hee Ahn, Byoung-Kyong Min","doi":"10.1109/IWW-BCI.2017.7858149","DOIUrl":null,"url":null,"abstract":"Brain machine interfaces (BMIs) enable us to control external devices using our brain signals. Using a grid-shaped flickering line-array and a shrink-rLDA classifier, top-down information could recently be decoded in a steady-state visual evoked potential (SSVEP)-based BMI paradigm. The present study tested its feasibility in online implementation. We found that within reasonable computing time (0.114 s on average) its online system was successfully accomplished with a decoding accuracy of 53.7% on average. The accuracy was 3.2 times significantly higher than the accuracy by random-shuffled data (16.7%). Therefore, using the grid-shaped SSVEP-based BMI, one's multiclass (at least 6 classes) intention can be online decoded and subsequently control external devices.","PeriodicalId":443427,"journal":{"name":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2017.7858149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Brain machine interfaces (BMIs) enable us to control external devices using our brain signals. Using a grid-shaped flickering line-array and a shrink-rLDA classifier, top-down information could recently be decoded in a steady-state visual evoked potential (SSVEP)-based BMI paradigm. The present study tested its feasibility in online implementation. We found that within reasonable computing time (0.114 s on average) its online system was successfully accomplished with a decoding accuracy of 53.7% on average. The accuracy was 3.2 times significantly higher than the accuracy by random-shuffled data (16.7%). Therefore, using the grid-shaped SSVEP-based BMI, one's multiclass (at least 6 classes) intention can be online decoded and subsequently control external devices.
自顶向下SSVEP-BMI的在线实现
脑机接口(bmi)使我们能够使用我们的大脑信号来控制外部设备。使用网格状的闪烁线阵列和收缩rlda分类器,自上而下的信息可以在基于稳态视觉诱发电位(SSVEP)的BMI范式中进行解码。本研究验证了其在线实施的可行性。我们发现,在合理的计算时间(平均0.114秒)内,其在线系统成功完成,解码准确率平均为53.7%。准确率是随机洗牌法的3.2倍(16.7%)。因此,使用基于网格状ssvep的BMI,可以在线解码一个人的多类(至少6类)意图,并随后控制外部设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信