Philip Lenz, Julius Ziegler, Andreas Geiger, Martin Roser
{"title":"Sparse scene flow segmentation for moving object detection in urban environments","authors":"Philip Lenz, Julius Ziegler, Andreas Geiger, Martin Roser","doi":"10.1109/IVS.2011.5940558","DOIUrl":null,"url":null,"abstract":"Modern driver assistance systems such as collision avoidance or intersection assistance need reliable information on the current environment. Extracting such information from camera-based systems is a complex and challenging task for inner city traffic scenarios. This paper presents an approach for object detection utilizing sparse scene flow. For consecutive stereo images taken from a moving vehicle, corresponding interest points are extracted. Thus, for every interest point, disparity and optical flow values are known and consequently, scene flow can be calculated. Adjacent interest points describing a similar scene flow are considered to belong to one rigid object. The proposed method does not rely on object classes and allows for a robust detection of dynamic objects in traffic scenes. Leading vehicles are continuously detected for several frames. Oncoming objects are detected within five frames after their appearance.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156
Abstract
Modern driver assistance systems such as collision avoidance or intersection assistance need reliable information on the current environment. Extracting such information from camera-based systems is a complex and challenging task for inner city traffic scenarios. This paper presents an approach for object detection utilizing sparse scene flow. For consecutive stereo images taken from a moving vehicle, corresponding interest points are extracted. Thus, for every interest point, disparity and optical flow values are known and consequently, scene flow can be calculated. Adjacent interest points describing a similar scene flow are considered to belong to one rigid object. The proposed method does not rely on object classes and allows for a robust detection of dynamic objects in traffic scenes. Leading vehicles are continuously detected for several frames. Oncoming objects are detected within five frames after their appearance.