Fusion Point Pruning for Optimized 2D Object Detection with Radar-Camera Fusion

Lukas Stäcker, Philipp Heidenreich, J. Rambach, D. Stricker
{"title":"Fusion Point Pruning for Optimized 2D Object Detection with Radar-Camera Fusion","authors":"Lukas Stäcker, Philipp Heidenreich, J. Rambach, D. Stricker","doi":"10.1109/WACV51458.2022.00134","DOIUrl":null,"url":null,"abstract":"Object detection is one of the most important perception tasks for advanced driver assistant systems and autonomous driving. Due to its complementary features and moderate cost, radar-camera fusion is of particular interest in the automotive industry but comes with the challenge of how to optimally fuse the heterogeneous data sources. To solve this for 2D object detection, we propose two new techniques to project the radar detections onto the image plane, exploiting additional uncertainty information. We also introduce a new technique called fusion point pruning, which automatically finds the best fusion points of radar and image features in the neural network architecture. These new approaches combined surpass the state of the art in 2D object detection performance for radar-camera fusion models, evaluated with the nuScenes dataset. We further find that the utilization of radar-camera fusion is especially beneficial for night scenes.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Object detection is one of the most important perception tasks for advanced driver assistant systems and autonomous driving. Due to its complementary features and moderate cost, radar-camera fusion is of particular interest in the automotive industry but comes with the challenge of how to optimally fuse the heterogeneous data sources. To solve this for 2D object detection, we propose two new techniques to project the radar detections onto the image plane, exploiting additional uncertainty information. We also introduce a new technique called fusion point pruning, which automatically finds the best fusion points of radar and image features in the neural network architecture. These new approaches combined surpass the state of the art in 2D object detection performance for radar-camera fusion models, evaluated with the nuScenes dataset. We further find that the utilization of radar-camera fusion is especially beneficial for night scenes.
基于雷达-相机融合优化二维目标检测的融合点剪枝
目标检测是高级驾驶辅助系统和自动驾驶中最重要的感知任务之一。由于其互补性和适中的成本,雷达-相机融合技术在汽车工业中受到特别关注,但如何最佳地融合异构数据源是一个挑战。为了解决二维目标检测的这个问题,我们提出了两种新技术,利用额外的不确定性信息,将雷达检测投影到图像平面上。我们还介绍了一种新的融合点修剪技术,该技术在神经网络架构中自动找到雷达和图像特征的最佳融合点。这些新方法结合起来,在雷达-相机融合模型的2D目标检测性能方面超越了最先进的水平,并使用nuScenes数据集进行了评估。我们进一步发现,利用雷达-相机融合对夜景尤其有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信