Pre-training with Phonetics and glyphs for Chinese Spelling Correction

Yang Tao, Jian Zhang, Ziyue Niu
{"title":"Pre-training with Phonetics and glyphs for Chinese Spelling Correction","authors":"Yang Tao, Jian Zhang, Ziyue Niu","doi":"10.1109/ITOEC53115.2022.9734606","DOIUrl":null,"url":null,"abstract":"Spelling error correction is a challenging task. Extensive approaches nowadays either use rule-based statistics and language models or sequence-to-sequence deep learning methods. In this paper, we propose a new end-to-end CSC model that uses powerful pre-training and fine-tuning methods to integrate phonetic features, stroke features into the language model. The selected tokens are masked according to the confusion set using similar characters, instead of using a fixed token mask as in BERT [10]. in addition to the prediction of the characters themselves, this paper introduces phonetic prediction to learn knowledge of spelling errors at the phonetic level. In addition to this, we add a probability weight in order to balance error detection and error correction throughout the framework. experimental results show that the model achieves a significant improvement over the SIGHAN dataset and outperforms previous state-of-the-art methods.","PeriodicalId":127300,"journal":{"name":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITOEC53115.2022.9734606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spelling error correction is a challenging task. Extensive approaches nowadays either use rule-based statistics and language models or sequence-to-sequence deep learning methods. In this paper, we propose a new end-to-end CSC model that uses powerful pre-training and fine-tuning methods to integrate phonetic features, stroke features into the language model. The selected tokens are masked according to the confusion set using similar characters, instead of using a fixed token mask as in BERT [10]. in addition to the prediction of the characters themselves, this paper introduces phonetic prediction to learn knowledge of spelling errors at the phonetic level. In addition to this, we add a probability weight in order to balance error detection and error correction throughout the framework. experimental results show that the model achieves a significant improvement over the SIGHAN dataset and outperforms previous state-of-the-art methods.
语音与字形的汉语拼写校正预训练
拼写错误纠正是一项具有挑战性的任务。现在广泛的方法要么使用基于规则的统计和语言模型,要么使用序列到序列的深度学习方法。在本文中,我们提出了一个新的端到端CSC模型,该模型使用强大的预训练和微调方法将语音特征、笔画特征集成到语言模型中。所选的令牌会根据混淆集使用相似的字符进行掩码,而不是像BERT[10]那样使用固定的令牌掩码。除了汉字本身的预测外,本文还引入了语音预测,从语音层面学习拼写错误的知识。除此之外,我们还添加了一个概率权重,以便在整个框架中平衡错误检测和错误纠正。实验结果表明,该模型比SIGHAN数据集取得了显著的改进,并且优于以前的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信