Smiling Hyperbolas

A. Polishchuk
{"title":"Smiling Hyperbolas","authors":"A. Polishchuk","doi":"10.2139/ssrn.2878034","DOIUrl":null,"url":null,"abstract":"We propose using hyperbolic splines for arbitrage free interpolation of implied volatilities in the strike domain. Hyperbolic splines allow for perfect fit to input data and have carry computational cost since there is no root finding or calibration: spline parameters are expressed directly in terms of elementary mathematical functions. We demonstrate that hyperbolic splines work just as well in the extrapolation region providing a tool for fixing wings produced by arbitrage prone methods. Finally we present a family of global hyperbolic splines that have time-dependent extensions with an intuitive interpretation in terms of local diffusions coupled with a jump to default.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2878034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose using hyperbolic splines for arbitrage free interpolation of implied volatilities in the strike domain. Hyperbolic splines allow for perfect fit to input data and have carry computational cost since there is no root finding or calibration: spline parameters are expressed directly in terms of elementary mathematical functions. We demonstrate that hyperbolic splines work just as well in the extrapolation region providing a tool for fixing wings produced by arbitrage prone methods. Finally we present a family of global hyperbolic splines that have time-dependent extensions with an intuitive interpretation in terms of local diffusions coupled with a jump to default.
微笑的双曲线
我们提出了使用双曲样条对走向域的隐含波动率进行无套利插值。双曲样条可以完美地拟合输入数据,并且由于没有查找根或校准,因此具有计算成本:样条参数直接用初等数学函数表示。我们证明了双曲样条在外推区域同样有效,为固定由套利倾向方法产生的机翼提供了一种工具。最后,我们给出了一类全局双曲样条,它们具有随时间变化的扩展,并能直观地解释局部扩散与跳跃到默认值的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信