A bi-directional cell voltage equalization system with implantable modules

Patrin Illenberger, Briony P. Forsberg, D. Thrimawithana, T. Balme, U. Madawala
{"title":"A bi-directional cell voltage equalization system with implantable modules","authors":"Patrin Illenberger, Briony P. Forsberg, D. Thrimawithana, T. Balme, U. Madawala","doi":"10.1109/PEAC.2014.7037997","DOIUrl":null,"url":null,"abstract":"This paper presents a novel cell voltage equalization system, which employs cell management modules that can be attached with individual cells in a battery bank. A unique resonant bi-directional DC-DC converter topology is employed to facilitate bi-directional energy transfer between cells and the battery bank. A mathematical analysis of the bi-directional resonant DC-DC converter system is presented followed by the development of prototype system suitable for a battery bank consisting of series connected TS-LPF100AHA lithium-ion polymer batteries. Finally, simulated results gathered from a 3-cell 100 Ah battery bank are presented to validate the viability of the proposed system as a modular, extendible and cost effective solution.","PeriodicalId":309780,"journal":{"name":"2014 International Power Electronics and Application Conference and Exposition","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Power Electronics and Application Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEAC.2014.7037997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel cell voltage equalization system, which employs cell management modules that can be attached with individual cells in a battery bank. A unique resonant bi-directional DC-DC converter topology is employed to facilitate bi-directional energy transfer between cells and the battery bank. A mathematical analysis of the bi-directional resonant DC-DC converter system is presented followed by the development of prototype system suitable for a battery bank consisting of series connected TS-LPF100AHA lithium-ion polymer batteries. Finally, simulated results gathered from a 3-cell 100 Ah battery bank are presented to validate the viability of the proposed system as a modular, extendible and cost effective solution.
具有可植入模块的双向电池电压均衡系统
本文提出了一种新颖的电池电压均衡系统,该系统采用电池管理模块,可以与电池组中的单个电池相连。采用独特的谐振双向DC-DC变换器拓扑结构,促进电池单元和电池组之间的双向能量传递。对双向谐振DC-DC变换器系统进行了数学分析,并开发了适用于TS-LPF100AHA锂离子聚合物电池串联电池组的原型系统。最后,给出了一个3节100 Ah电池组的模拟结果,以验证所提出的系统作为模块化、可扩展和经济有效的解决方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信