Pannagadatta K. Shivaswamy, Wei Chu, Martin Jansche
{"title":"A Support Vector Approach to Censored Targets","authors":"Pannagadatta K. Shivaswamy, Wei Chu, Martin Jansche","doi":"10.1109/ICDM.2007.93","DOIUrl":null,"url":null,"abstract":"Censored targets, such as the time to events in survival analysis, can generally be represented by intervals on the real line. In this paper, we propose a novel support vector technique (named SVCR) for regression on censored targets. SVCR inherits the strengths of support vector methods, such as a globally optimal solution by convex programming, fast training speed and strong generalization capacity. In contrast to ranking approaches to survival analysis, our approach is able not only to achieve superior ordering performance, but also to predict the survival time very well. Experiments show a significant performance improvement when the majority of the training data is censored. Experimental results on several survival analysis datasets demonstrate that SVCR is very competitive against classical survival analysis models.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"53 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"143","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 143
Abstract
Censored targets, such as the time to events in survival analysis, can generally be represented by intervals on the real line. In this paper, we propose a novel support vector technique (named SVCR) for regression on censored targets. SVCR inherits the strengths of support vector methods, such as a globally optimal solution by convex programming, fast training speed and strong generalization capacity. In contrast to ranking approaches to survival analysis, our approach is able not only to achieve superior ordering performance, but also to predict the survival time very well. Experiments show a significant performance improvement when the majority of the training data is censored. Experimental results on several survival analysis datasets demonstrate that SVCR is very competitive against classical survival analysis models.