Hybrid Grid Partition and Rough Set Method for Fuzzy Rule Generation in Dataset Classification: Enhancing Accuracy and Interpretability for Complex Data Analysis

Tafitarisoa Solofo, Jelca Velo Norlestine Jérôme
{"title":"Hybrid Grid Partition and Rough Set Method for Fuzzy Rule Generation in Dataset Classification: Enhancing Accuracy and Interpretability for Complex Data Analysis","authors":"Tafitarisoa Solofo, Jelca Velo Norlestine Jérôme","doi":"10.35335/emod.v13i3.17","DOIUrl":null,"url":null,"abstract":"This research proposes a novel approach that combines hybrid grid partitioning, fuzzy rule generation, and rough set theory to enhance the accuracy and interpretability of dataset classification in complex data analysis. The study addresses the limitations of traditional classification methods by leveraging grid partitioning to simplify the dataset representation and focus on relevant regions of the attribute space. Fuzzy rule generation captures uncertainties and enables a more nuanced classification by considering membership degrees. Additionally, rough set theory is employed to identify relevant attributes, reducing the complexity of the model and enhancing interpretability. The proposed approach is particularly suitable for complex datasets characterized by high dimensionality and uncertainties. Experimental evaluations demonstrate its effectiveness in improving accuracy and providing meaningful insights for decision-making. The research contributes to advancing the field of dataset classification by offering a comprehensive framework that combines grid partitioning, fuzzy rule generation, and rough set theory to tackle complex data analysis challenges.","PeriodicalId":262913,"journal":{"name":"International Journal of Enterprise Modelling","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35335/emod.v13i3.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research proposes a novel approach that combines hybrid grid partitioning, fuzzy rule generation, and rough set theory to enhance the accuracy and interpretability of dataset classification in complex data analysis. The study addresses the limitations of traditional classification methods by leveraging grid partitioning to simplify the dataset representation and focus on relevant regions of the attribute space. Fuzzy rule generation captures uncertainties and enables a more nuanced classification by considering membership degrees. Additionally, rough set theory is employed to identify relevant attributes, reducing the complexity of the model and enhancing interpretability. The proposed approach is particularly suitable for complex datasets characterized by high dimensionality and uncertainties. Experimental evaluations demonstrate its effectiveness in improving accuracy and providing meaningful insights for decision-making. The research contributes to advancing the field of dataset classification by offering a comprehensive framework that combines grid partitioning, fuzzy rule generation, and rough set theory to tackle complex data analysis challenges.
数据集分类中模糊规则生成的混合网格划分和粗糙集方法:提高复杂数据分析的准确性和可解释性
本研究提出了一种结合混合网格划分、模糊规则生成和粗糙集理论的新方法,以提高复杂数据分析中数据集分类的准确性和可解释性。该研究利用网格划分来简化数据集表示,并关注属性空间的相关区域,解决了传统分类方法的局限性。模糊规则生成捕获不确定性,并通过考虑隶属度实现更细微的分类。此外,利用粗糙集理论识别相关属性,降低了模型的复杂性,增强了可解释性。该方法特别适用于具有高维数和不确定性的复杂数据集。实验评估证明了该方法在提高准确性和为决策提供有意义的见解方面的有效性。该研究提供了一个综合的框架,结合网格划分、模糊规则生成和粗糙集理论来解决复杂的数据分析挑战,有助于推进数据集分类领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信