Novel split quality measures for stratified multilabel cross validation with application to large and sparse gene ontology datasets

Henri Tiittanen, L. Holm, Petri Toronen
{"title":"Novel split quality measures for stratified multilabel cross validation with application to large and sparse gene ontology datasets","authors":"Henri Tiittanen, L. Holm, Petri Toronen","doi":"10.3934/aci.222003","DOIUrl":null,"url":null,"abstract":"Multilabel learning is an important topic in machine learning research. Evaluating models in multilabel settings requires specific cross validation methods designed for multilabel data. In this article, we show that the most widely used cross validation split quality measure does not behave adequately with multilabel data that has strong class imbalance. We present improved measures and an algorithm, optisplit, for optimizing cross validations splits. Extensive comparison of various types of cross validation methods shows that optisplit produces more even cross validation splits than the existing methods and it is among the fastest methods with good splitting performance.","PeriodicalId":414924,"journal":{"name":"Applied Computing and Intelligence","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/aci.222003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Multilabel learning is an important topic in machine learning research. Evaluating models in multilabel settings requires specific cross validation methods designed for multilabel data. In this article, we show that the most widely used cross validation split quality measure does not behave adequately with multilabel data that has strong class imbalance. We present improved measures and an algorithm, optisplit, for optimizing cross validations splits. Extensive comparison of various types of cross validation methods shows that optisplit produces more even cross validation splits than the existing methods and it is among the fastest methods with good splitting performance.
应用于大型稀疏基因本体数据集的分层多标签交叉验证的新分离质量度量
多标签学习是机器学习研究中的一个重要课题。在多标签设置中评估模型需要为多标签数据设计特定的交叉验证方法。在本文中,我们展示了最广泛使用的交叉验证分割质量度量不能充分地处理具有强类不平衡的多标签数据。我们提出了改进的措施和算法,optisplit,优化交叉验证分割。通过对各种交叉验证方法的比较,表明optisplit比现有的交叉验证方法产生更均匀的交叉验证分割,是分割速度最快、分割性能好的方法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信