Ji Zhou, Mengqi Guo, Yaojun Qiao, Haide Wang, Long Liu, Weiping Liu, Changyuan Yu, Jianping Li, Zhaohui Li
{"title":"Digital Signal Processing for Faster-than-Nyquist Non-Orthogonal Systems: An Overview","authors":"Ji Zhou, Mengqi Guo, Yaojun Qiao, Haide Wang, Long Liu, Weiping Liu, Changyuan Yu, Jianping Li, Zhaohui Li","doi":"10.1109/ICT.2019.8798855","DOIUrl":null,"url":null,"abstract":"In recent years, faster-than-Nyquist (FTN) nonorthogonal systems draw more attention for high-capacity communication systems. In this paper, we will introduce digital signal processing for eliminating interference in FTN nonorthogonal systems. FTN non-orthogonal systems can be divided into single-carrier FTN (SC-FTN) and multi-carrier FTN (MC-FTN) non-orthogonal systems. In SC-FTN non-orthogonal systems, joint algorithms will be studied for compensating the serious inter-symbol interference, including joint feed-forward equalizer, post filter and maximum likelihood sequence detection (MLSD) algorithm and joint frequency-domain equalizer and MLSD algorithm. In MC-FTN non-orthogonal systems, intercarrier interference is similar to the interference in multiple input multiple output (MIMO) systems. The interference cancellation algorithm for MIMO systems is also effective for MC-FTN non-orthogonal systems. We will introduce MIMO decoding to eliminate the interference in MC-FTN non-orthogonal systems.","PeriodicalId":127412,"journal":{"name":"2019 26th International Conference on Telecommunications (ICT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2019.8798855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In recent years, faster-than-Nyquist (FTN) nonorthogonal systems draw more attention for high-capacity communication systems. In this paper, we will introduce digital signal processing for eliminating interference in FTN nonorthogonal systems. FTN non-orthogonal systems can be divided into single-carrier FTN (SC-FTN) and multi-carrier FTN (MC-FTN) non-orthogonal systems. In SC-FTN non-orthogonal systems, joint algorithms will be studied for compensating the serious inter-symbol interference, including joint feed-forward equalizer, post filter and maximum likelihood sequence detection (MLSD) algorithm and joint frequency-domain equalizer and MLSD algorithm. In MC-FTN non-orthogonal systems, intercarrier interference is similar to the interference in multiple input multiple output (MIMO) systems. The interference cancellation algorithm for MIMO systems is also effective for MC-FTN non-orthogonal systems. We will introduce MIMO decoding to eliminate the interference in MC-FTN non-orthogonal systems.