{"title":"Data-intensive computing for competent genetic algorithms: a pilot study using meandre","authors":"Xavier Llorà","doi":"10.1145/1569901.1570087","DOIUrl":null,"url":null,"abstract":"Data-intensive computing has positioned itself as a valuable programming paradigm to efficiently approach problems requiring processing very large volumes of data. This paper presents a pilot study about how to apply the data-intensive computing paradigm to evolutionary computation algorithms. Two representative cases (selectorecombinative genetic algorithms and estimation of distribution algorithms) are presented, analyzed, and discussed. This study shows that equivalent data-intensive computing evolutionary computation algorithms can be easily developed, providing robust and scalable algorithms for the multicore-computing era. Experimental results show how such algorithms scale with the number of available cores without further modification.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Data-intensive computing has positioned itself as a valuable programming paradigm to efficiently approach problems requiring processing very large volumes of data. This paper presents a pilot study about how to apply the data-intensive computing paradigm to evolutionary computation algorithms. Two representative cases (selectorecombinative genetic algorithms and estimation of distribution algorithms) are presented, analyzed, and discussed. This study shows that equivalent data-intensive computing evolutionary computation algorithms can be easily developed, providing robust and scalable algorithms for the multicore-computing era. Experimental results show how such algorithms scale with the number of available cores without further modification.