Efficient Memory Occupancy Models for In-memory Databases

Karsten Molka, G. Casale
{"title":"Efficient Memory Occupancy Models for In-memory Databases","authors":"Karsten Molka, G. Casale","doi":"10.1109/MASCOTS.2016.56","DOIUrl":null,"url":null,"abstract":"Predicting memory occupancy during the execution of large-scale analytical workloads becomes critical for in-memory databases. In particular, probabilistic performance measures for such systems are of interest, but difficult to model with analytical methods due to the highly variable threading levels in corresponding workloads. Since literature with queueing theoretic background largely ignores the memory modeling part, we propose a new probabilistic model to capture the memory occupancy distribution in such systems. We further combine this model with our analytical formulation TP-AMVA for greater efficiency compared to simulation and evaluate against experiments using SAP HANA.","PeriodicalId":129389,"journal":{"name":"2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS)","volume":"2021 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS.2016.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predicting memory occupancy during the execution of large-scale analytical workloads becomes critical for in-memory databases. In particular, probabilistic performance measures for such systems are of interest, but difficult to model with analytical methods due to the highly variable threading levels in corresponding workloads. Since literature with queueing theoretic background largely ignores the memory modeling part, we propose a new probabilistic model to capture the memory occupancy distribution in such systems. We further combine this model with our analytical formulation TP-AMVA for greater efficiency compared to simulation and evaluate against experiments using SAP HANA.
内存数据库的高效内存占用模型
在执行大规模分析工作负载期间预测内存占用情况对于内存数据库至关重要。具体来说,这类系统的概率性能度量值得关注,但由于相应工作负载中的线程级别变化很大,因此很难用分析方法进行建模。由于具有排队理论背景的文献在很大程度上忽略了内存建模部分,我们提出了一种新的概率模型来捕捉这类系统的内存占用分布。我们进一步将该模型与我们的分析公式TP-AMVA结合起来,与使用SAP HANA的模拟和实验相比,可以获得更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信