Outcome prediction of DOTA2 based on Naïve Bayes classifier

Kaixiang Wang, Wenqian Shang
{"title":"Outcome prediction of DOTA2 based on Naïve Bayes classifier","authors":"Kaixiang Wang, Wenqian Shang","doi":"10.1109/ICIS.2017.7960061","DOIUrl":null,"url":null,"abstract":"Although DOTA2 is a popular game around the world, no clear algorithm or software are designed to forecast the winning probability by analyzing the lineups. However, the author finds that Naive Bayes classifier, one of the most common classification algorithm, can analyze the lineups and predict the outcome according to the lineups and gives an improved Naive Bayes classifier. Using the DOTA2 data set published in the UCI Machine Learning Repository, we test Naive Bayes classifier's prediction of respective winning probability of both sides in the game. The results show that Naive Bayes classifier is a practical tool to analyze the lineups and predict the outcome based on players' choices.","PeriodicalId":301467,"journal":{"name":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2017.7960061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Although DOTA2 is a popular game around the world, no clear algorithm or software are designed to forecast the winning probability by analyzing the lineups. However, the author finds that Naive Bayes classifier, one of the most common classification algorithm, can analyze the lineups and predict the outcome according to the lineups and gives an improved Naive Bayes classifier. Using the DOTA2 data set published in the UCI Machine Learning Repository, we test Naive Bayes classifier's prediction of respective winning probability of both sides in the game. The results show that Naive Bayes classifier is a practical tool to analyze the lineups and predict the outcome based on players' choices.
基于Naïve贝叶斯分类器的DOTA2结果预测
虽然DOTA2是一款风靡全球的游戏,但并没有明确的算法或软件可以通过分析组队来预测获胜的概率。然而,作者发现最常用的分类算法之一朴素贝叶斯分类器可以分析阵容并根据阵容预测结果,并给出了一种改进的朴素贝叶斯分类器。使用UCI机器学习存储库中发布的DOTA2数据集,我们测试了朴素贝叶斯分类器对游戏双方各自获胜概率的预测。结果表明,朴素贝叶斯分类器是一种实用的工具,可以根据球员的选择来分析阵容并预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信